THERMOSPHERICA: A SECOND TEMPERATURE, DENSITY, AND COMPOSITION: NEW MODES ist in the second Sminsomery/snoom/stelenging wind Street Stelength (NASA-CR-153049) THERMOSPHERIC TEMPERATURE, DENSITY, AND COMPOSITION: NEW MODELS (Smithsonian Astrophysical Observatory) 112 p HC A06/MF A01 CSCL 04A N//-23648 Unclas 30129 G3/46 # Research in Space Science SAO Special Report No. 375 # THERMOSPHERIC TEMPERATURE, DENSITY, AND COMPOSITION: NEW MODELS L. G. Jacchia March 15, 1977 Smithsonian Institution Astrophysical Observatory Cambridge, Massachusetts 02138 ## TABLE OF CONTENTS | | | Page | |----------|---|------------| | ABSTRAC | T | vii | | INTRODU | CTION | 1 | | PART I: | THE STATIC MODELS | 5 | | 1 | TEMPERATURE PROFILES | 7 | | 2 | COMPOSITION | 9 | | PART II: | THERMOSPHERIC VARIATIONS | 15 | | 1 | VARIATIONS IN THE THERMOSPHERE AND EXOSPHERE | 17 | | 2 | THE VARIATION WITH SOLAR ACTIVITY | 19 | | 3 | THE DIURNAL VARIATION | 27 | | 4 | VARIATIONS WITH GEOMAGNETIC ACTIVITY | 37 | | | 4.1 The Thermal Component | 3 8 | | | 4.2 Effect of a Change in the Height of the Homopause | 39 | | • | 4.3 The Equatorial Wave | 40 | | | 4.4 The Global Temperature Distribution | 40 | | 5 | SEASONAL-LATITUDINAL VARIATIONS | 43 | | | 5.1 The Thermospheric Seasonal-Latitudinal Variation | 43 | | | 5.2 The Mesospheric Seasonal-Latitudinal Variation | 44 | | 6 | THE SEMIANNUAL VARIATION | 47 | | 7 | RAPID DENSITY FLUCTUATIONS | 51 | | 8 | SUMMARY OF FORMULAE USED IN THE TEXT | 53 | | 9 | NUMERICAL EXAMPLE | 57 | | REFEREN | NCES | 61 | ## ILLUSTRATIONS | | | Page | |----|--|------| | 1 | Four temperature profiles from the present models | 8 | | 2 | Number densities of individual atmospheric constituents as a function of height for three representative exospheric temperatures | 13 | | 3 | Total density as a function of exospheric temperature for various heights | 14 | | 4 | Mean global exospheric temperature $T_{1/2}$ for quiet geomagnetic conditions as a function of the smoothed 10.7-cm solar flux | 21 | | 5 | Comparison between the temperatures of the present models with those of the models of Thuillier et al. and Hedin et al | 25 | | 6 | The diurnal variation of the exospheric temperature at the equator at the time of equinoxes | 30 | | 7 | Global distribution of the exospheric temperature for quiet geomagnetic conditions | 33 | | 8 | Local solar time of the maximum density of four atmospheric constituents as a function of height | 34 | | 9 | The density variation of four atmospheric constituents as a function of the invariant latitude | 41 | | 10 | Exospheric temperature profiles along the complete meridional circle. | 42 | | 11 | The semiannual density variation at 200 and 500 km | 50 | | | TABLES | | | 1 | Residuals from the models of densities from satellite drag | 2 | | 2 | Dependence of the maximum temperature gradient on the exospheric temperature | 8 | | 3 | Assumed sea-level composition | 9 | | 4 | The smoothed 10.7-cm solar flux \overline{F} , computed from equations (21) and (22) | 22 | | 5 | Comparison of exospheric temperatures as a function of the smoothed 10.7-cm solar flux \overline{F} | 24 | | 6 | Global distribution of exospheric temperatures at the time of the equinoxes and of the June solstice | 31 | | 7 | Parameters of the seasonal-latitudinal variation | 44 | # TABLES (cont.) | | | Fage | |----|---|------| | 8 | The "mesospheric" seasonal-latitudinal density variation according to equation (37) | 46 | | 9 | Tables for the computation of the semiannual density variation using equation (40) | 49 | | 10 | Basic static models | 65 | | 11 | Summary of log densities from Table 10 | 103 | #### **ABSTRACT** These models represent a thorough revision of those published by the author in 1971, which were incorporated in the COSPAR International Reference Atmosphere 1972. The models essentially consist of two parts: 1) the basic static models, which give temperature and density profiles for the relevant atmospheric constituents for any specified exospheric temperature, and 2) a set of formulae to compute the exospheric temperature and the expected deviations from the static models as a result of all the recognized types of thermospheric variation. For the basic static models, tables are given for heights from 90 to 2500 km and for exospheric temperatures from 500 to 2600 K. In the formulae for the variations, an attempt has been made to represent the changes in composition observed by mass spectrometers on the OGO 6 and ESRO 4 satellites. DING PAGE BLANK NOT FL | |
, | | t · | 3 | • | | |---|-------|---|-----|--------------------|--|--| | . | | | | | | | | | | ` | • | , | | · | | | | | | | | | | | | | | • | | | en sili servesia a | TRUMP OF THE SECTION OF A VIOLATION OF | | # THERMOSPHERIC TEMPERATURE, DENSITY, AND COMPOSITION: NEW MODELS L. G. Jacchia #### INTRODUCTION The models presented herein are a thoroughly revised version of our 1971 models (Jacchia, 1971a), which in turn were a revision of earlier, similarly patterned models (Jacchia, 1965, 1970). Following a widespread custom, we shall refer to these models as J65, J70, and J71. The models essentially consist of two parts: 1) the basic static models, which give temperature and density profiles for the relevant atmospheric constituents for any specified exospheric temperature, and 2) a set of formulae to compute the exospheric temperature and the expected deviations from the static models as a result of all the recognized types of thermospheric variation. In revising the basic models, we strove to reproduce the results from the OGO 6 satellite concerning the relative concentrations of $\rm N_2$ and O at 450 km (Taeusch and Carignan, 1972; Hedin, Mayr, Reber, Spencer, and Carignan, 1974), while keeping the total-density profiles anchored to satellite drag. This was also the aim of the Committee for the Extension of the U.S. Standard Atmosphere in constructing the higher altitude end of the U.S. Standard Atmosphere, 1976 (COESA, 1976), which consists of temperature and density profiles for a single exospheric temperature, 1000 K. As a consequence of this common aim and of mutual consultations, our profiles for 1000 K are very similar to the U.S. Standard profiles. In the lower thermosphere, where the U.S. Standard Atmosphere (USSA) relies heavily on the Aladdin experiments, we have tried to keep as close as possible to its O and $\rm O_2$ profiles. Our helium densities at 1000 km are about 30% smaller than those of the USSA. To obtain the higher ^{*}This work was supported in part by Grant NGR 09-015-002 from the National Aeronautics and Space Administration and Grants SRF 450123 and SRF 460117 from the Smithsonian Research Foundation. helium densities, which were thought to be necessary to fit some results from satellite drag, the USSA introduced an <u>ad hoc</u> vertical flux for helium. We have found this flux to be entirely unnecessary to fit our satellite-drag results at 1000 km. The difference in the interpretation of the drag lies in the theory used to compute the drag coefficient in a helium atmosphere. We have followed the formulation given by Cook (1965), according to which the drag coefficient becomes quite high, exceeding even 3.0, when a satellite moves in an atmosphere in which helium is the main constituent. The densities of earlier models relied almost entirely on satellite drag, for which the coefficient 2.2 had been adopted in the 200- to 400-km region, in accordance with an unwritten agreement among investigators. Table 1 gives mean residuals from the present models of densities computed from the drag of 10 satellites using a value of 2.20 for the drag coefficient in the region where it is nearly independent of height (around 200 to 400 km); \overline{z} is the mean "effective height" – this being the average of the actual height around the satellite's orbit weighted by the local atmospheric drag. The residual observed minus computed (model) (O - C) is given in units of $\log_{10} \rho$; n is the number of density determinations used in the comparison. Table 1. Residuals from the models of densities from satellite drag. | Satellite | ₹
(km) | O - C
(log ρ) | n | Interval | |------------|-------------|------------------|---------|---------------| | 1962 βτ2 | 26 8 | +0.001 | 1973 | 1963.0-1967.4 | | 1966 44A | 303 | -0.020 | 5094 | 1966.4-1975.0 | | 1958 Alpha | 368 | +0.005 | 5456 | 1958.1-1970.2 | | 1966 70A | 398 | -0.001 | 2601 | 1969.0-1975.0 | | 1960 ξ1 | 455 | +0.013 | 5279 | 1960.9-1975.0 | | 1964 76A | 610 | -0.042 | 4126 | 1964.9-1968.6 | | 1959 al | 614 | +0.001 | 2589 | 1959.2-1975.0 | | 1963 53A | 763 | -0.011 | 6150 | 1964.0-1968.4 | | 1968 66A | 842 | +0.001 | 4172 | 1968.6-1975.0 | | 1964 4A | 999 | [+0.036]* | 3371 | 1964.1-1969.4 | | | | | Total · | Extremes | | | | | 40811 | 1958.1-1975.0 | ^{*}Uncertain, because the near-circular orbit of the satellite caused the "observed" densities to be closer to the mean global densities than to the densities given by the model for the effective height at the geographic position of perigee. The description of the models is given in two parts. In Part I, we outline the construction of the static models. Part II deals with the several types of thermospheric variation and with the empirical equations that have been devised to represent them using the static models as a reference frame. Auxiliary tables to illustrate and facilitate the computation of some
of the variations are interspersed in the text. A summary of all the equations and a numerical example are to be found at the end of Part II. A detailed tabulation of the basic static models is given in Table 10, following the references: number densities of six atmospheric constituents are given in the range from 90 to 2500 km for 19 temperature profiles ending in exospheric temperatures from 500 to 2600 K; also tabulated are the total number density, the mean molecular mass, and the total density and pressure. The total densities are repeated in a compact summary form (Table 11) following the tables of the basic static models. , #### PART I ## THE STATIC MODELS EDING PAGE BLANK NOT FILME . / #### 1. TEMPERATURE PROFILES All temperature profiles start from a constant value $T_0 = 188$ K at the height $z_0 = 90$ km with a gradient $G_0 = (dT/dz)_{z=z_0} = 0$, rise to an inflection point at a fixed height $z_x = 125$ km, and become asymptotic to a temperature T_∞ (often referred to as the 'exospheric' temperature). Both the temperature T_x and the temperature gradient $T_x = (dT/dz)_{z=z_x}$ at the inflection point are functions of T_∞ , defined as follows: $$T_x - T_0 = 110.5 \sinh^{-1} 0.0045 (T_{\infty} - T_0)$$, (1) $$G_{x} = 1.9 \frac{T_{x} - T_{0}}{z_{x} - z_{0}}$$, (z in km), $$(T_0 = 188 \text{ K}, z_0 = 90 \text{ km}, \text{ and } z_x = 125 \text{ km})$$ The temperature profiles are given by the following: For $z < z_x$, $$T = T_{x} + \frac{T_{x} - T_{0}}{\pi/2} \tan^{-1} \left\{ \frac{G_{x}}{(T_{x} - T_{0})/(\pi/2)} (z - z_{x}) \left[1 + 1.7 \left(\frac{z - z_{x}}{z - z_{0}} \right)^{2} \right] \right\}, \quad (3)$$ For $z > z_x$, $$T = T_{x} + \frac{T_{\infty} - T_{x}}{\pi/2} \tan^{-1} \left\{ \frac{G_{x}}{(T_{\infty} - T_{x})/(\pi/2)} (z - z_{x}) \left[1 + 5.5 \times 10^{-5} (z - z_{x})^{2} \right] \right\},$$ (z in km) . (4) PRICEDING PAGE BLANK NOT FILMED. Table 2 shows the dependence of the maximum temperature gradient G_X on the exospheric temperature T_∞ . The family of temperature profiles originated by equations (1) to (4) is graphically illustrated in Figure 1. Table 2. Dependence of the maximum temperature gradient on the exospheric temperature. | T _∞
(°K) | G _x (deg km ⁻¹) | T
(°K) | G _x (deg km ⁻¹) | |------------------------|--|-----------|--| | 500 | 6.84 | 1400 | 14.38 | | 600 | 8.26 | 1600 | 15.29 | | 800 | 10.42 | 1800 | 16.07 | | 1000 | 12.04 | 2000 | 16.77 | | 1200 | 13.32 | 2200 | 17.39 | Figure 1. Four temperature profiles from the present models. #### 2. COMPOSITION We have assumed that the atmosphere is composed only of nitrogen, oxygen, argon, helium, and hydrogen, in a condition of mixing up to 100 km and in diffusion above this height. We have adopted the sea-level composition of the <u>U.S. Standard Atmosphere</u> 1962 (COESA, 1962) such as would obtain after elimination of the minor constituents and of hydrogen (which is introduced in our models at a height of 150 km). Thus, the assumed sea-level composition is as shown in Table 3. The resulting sea-level mean molecular mass is $\overline{M}_0 = 28.960$. Table 3. Assumed sea-level composition. | Constituent | Fraction by volume $q_0(i)$ | Molecular weight
M _i | |----------------------------|-----------------------------|------------------------------------| | Nitrogen (N ₂) | 0.78110 | 28.0134 | | Oxygen (O ₂) | 0.20955 | 31.9988 | | Argon (Ar) | 0.009343 | 39.948 | | Helium (He) | 0.000005242 | 4.0026 | | Sum | 1.00000 | | In our 1971 models, we had assumed that at heights below 100 km, any change in the mean molecular mass \overline{M} was caused only by oxygen dissociation. The ratio $n(O)/n(O_2)$ was thus uniquely determined by \overline{M} , for which an empirical profile was given for heights between 90 and 100 km. Since above 100 km composition was rigidly determined by molecular diffusion, there was no provision to account for oxygen dissociation or for any departure from diffusion equilibrium. In the present models, we still use an empirical profile of a mean molecular mass \overline{M}' from 90 to 100 km, but we have added independent corrections to the values of n(O) and $n(O_2)$ determined from this profile; these corrections extend right across the homopause. The final mean molecular mass \overline{M} is computed in the usual manner after the corrections to n(O) and $n(O_2)$ have been applied. The \overline{M}' profile is defined by $$\overline{M}'(z) = \sum_{n=0}^{5} c_n(z - 90)^n$$, (90 < z < 100 ; z in km) . (5) The coefficients c_n are given below: $$\begin{aligned} \mathbf{c}_0 &= 28.89122 \quad , \\ \mathbf{c}_1 &= -2.83071 \times 10^{-2} \quad , \\ \mathbf{c}_2 &= -6.59924 \times 10^{-3} \quad , \\ \mathbf{c}_3 &= -3.39574 \times 10^{-4} \quad , \\ \mathbf{c}_4 &= +6.19256 \times 10^{-5} \quad , \\ \mathbf{c}_5 &= -1.84796 \times 10^{-6} \quad . \end{aligned}$$ First, a density profile ρ' is computed from \overline{M}' by integrating the barometric equation $$\frac{d\rho'}{\rho'} = \frac{T}{M} d\left(\frac{\overline{M}'}{T}\right) - \frac{\overline{M}'g}{R^*T} dz , \qquad (6)$$ in which the temperature profiles of equation (3) are used with a fixed boundary value $\rho'_0 = 3.43 \times 10^{-6} \text{ kg m}^{-3}$ at z = 90 km. The acceleration due to gravity, g, is defined by $$g = 9.80665 \left(1 + \frac{z}{R_e}\right)^2 \text{ m sec}^{-2}$$, $R_e = 6.356766 \times 10^6 \text{ m}$. (7) This equation (Harrison, 1951; Minzner and Ripley, 1956) is an excellent approximation to the mean value of g (centrifugal acceleration included) at the latitude of $45^{\circ}32'40''$. The universal gas constant $R^* = 8.31432 \times 10^3$ kg m (kg-mol)⁻¹ K⁻¹. From ρ' we derive a number density N' by $$N' = \frac{A\rho'}{\overline{M}'} \quad , \tag{8}$$ where A is Avogadro's number, 6.02217×10^{26} (mks). For N₂, Ar, and He, the number densities n(i) are computed from $$n(i) = q_0(i) \frac{\overline{M'}}{\overline{M'}_0} N' , \qquad (9)$$ while for O and O2, we have $$n'(O) = 2N'\left(1 - \frac{\overline{M'}}{\overline{M'}_0}\right) , \qquad (10)$$ $$\mathbf{n'}(O_2) = \mathbf{N'} \left\{ \frac{\overline{\mathbf{M'}}}{\overline{\mathbf{M'}}_0} \left[1 + \mathbf{q}_0(O_2) \right] - 1 \right\} . \tag{11}$$ To n'(O) and $n'(O_2)$ we apply empirical corrections to account for atomic oxygen production above the homopause, so that the final number densities of O and O_2 become $$\log n(O) = \log n'(O) + \Delta \log n'(O) , \qquad (12)$$ $$\log n(O_2) = \log n'(O_2) + \Delta \log n'(O_2)$$ (13) The corrections are $$\Delta \log n'(O) = -0.24 \exp \left[-0.009(z - 97.7)^2\right]$$, (14) $$\Delta \log n'(O_2) = -0.07 \{1 + \tanh [0.18(z - 111)]\}$$, (z in km). (15) The final values of N and ρ are computed from Σ n(i) and Σ n(i) M_i by using the original values of n(i) for N₂, Ar, and He as computed from equation (9) and the corrected values of n(O) and n(O₂) as computed from equations (10) to (15). The number densities n(i) at 100 km computed in the manner just described are taken as boundary values in the integration of the diffusion equation, which is used to compute n(i) for heights above 100 km. We can write the equation in the form $$\frac{dn(i)}{n(i)} + \frac{dT}{T} (1 + a_i) + \frac{dz}{H_i} + \frac{\Phi_i}{D} \frac{dz}{n(i)} = 0 , \qquad (z > 100 \text{ km}) . \qquad (16)$$ Here, α_i and Φ_i are, respectively, the thermal diffusion coefficient and the vertical flux proper to the species i, D is the mutual diffusion coefficient, and $H_i = R^*T/M_i g$, the scale height of species i. For helium and hydrogen, we assumed $\alpha_i = -0.38$ and -0.25, respectively; for all other constituents, $\alpha_i = 0$. We took Φ_i to be zero for all constituents except hydrogen, for which we used a vertical flux proportional to the number density at a height of 500 km, as given by $$\log_{10} n_{500}(H) = 5.94 + 28.9 T_{\infty}^{-1/4}$$, (mks), $$\log_{10} \Phi(H) = 6.90 + 28.9 \text{ T}_{\infty}^{-1/4}$$, (mks) , (18) and a diffusion coefficient D taken from the U.S. Standard Atmosphere, 1976: $$D = 2.0 \times 10^{20} \frac{\sqrt{T}}{N} , \qquad (19)$$ where N is the total number density. The hydrogen densities are based mainly on Brinton, Mayr, and Potter (1975), while the absolute term in the equation for $\Phi(H)$ was chosen such as to make the flux for $T_{\infty} = 1000$ K equal to that used in the U.S. Standard Atmosphere, 1976. The variations of the number densities of the various atmospheric species and of the total density with temperature and height are illustrated in Figures 2 and 3. Atomic nitrogen. Mauersberger, Engebretson, Kayser, and Potter (1976) have succeeded in measuring atomic nitrogen with the open-source neutral mass spectrometer on the Atmosphere Explorer C satellite. Introducing their data into our models, we find that for an exospheric temperature of 700 K, n(N)/n(O) increases from 0.012 at 500 km to 0.048 at 1000 km; for 1500 K, the ratio is only 0.0027 at 500 km and increases to 0.0049 at 1000 km. Although not insignificant, N never becomes important enough to justify its introduction into our models at the present state of knowledge about its behavior. Figure 2. Number densities of individual atmospheric constituents as a function of height for three representative exospheric temperatures. The mean molecular mass as a function of height is shown for various exospheric temperatures in the lower right diagram. Figure 3. Total density as a function of exospheric temperature for various heights. # PART II ## THERMOSPHERIC VARIATIONS #### 1. VARIATIONS IN THE THERMOSPHERE AND EXOSPHERE Several types of variation are recognized in the atmospheric regions covered by the present models. They can be classified as follows: - 1. Variation with the solar cycle. - 2. Variation with the daily change in activity on
the visible disk of the sun. - 3. The daily, or diurnal, variation. - 4. Variation with geomagnetic activity. - 5. Seasonal-latitudinal variations. - 6. The semiannual variation. - 7. Rapid density fluctuations probably connected with gravity waves. All these variations, with the exception of the last, are subject to some amount of regularity and can be predicted with varying degrees of accuracy on the basis of ground-based observational data. It should be obvious that static models cannot represent all types of variation equally well. They should be quite adequate when the characteristic time of the variation is much longer than the time involved in the conduction, convection, and diffusion processes; when, on the other hand, it is comparable or shorter—as in the daily variation and the geomagnetic effect—we must expect poorer results. By this, we mean that if we try to represent the observed density variations, we may have to introduce temperature variations that are not entirely correct, or vice versa. Since, by far, the largest observational material consists of density measurements, it is the density variation that we have tried to keep correct. We have no direct evidence so far that the resulting temperature variation might be grossly in error; some error, however, must be expected in the daily variation and in the geomagnetic effect. In the analytic formulation of the different types of variation, we have tried to avoid a proliferation of symbols or the use of numerical subscripts for the many constants. Therefore, we have made no effort to keep the symbolism consistent throughout: the same letters have often been used for exponents or coefficients in equations pertaining to separate types of variation. We have assumed that no confusion would result if it is understood that, apart from such universally accepted symbols as T, ρ , ϕ , and z for temperature, density, latitude, and height, each type of variation has its own separate symbolism. 17 #### 2. THE VARIATION WITH SOLAR ACTIVITY The ultraviolet solar radiation that heats the earth's upper atmosphere actually consists of two components, one related to active regions on the solar disk and the other to the disk itself. The active-region component comes from areas of higher temperature and consists mainly of the spectral lines of highly ionized atoms, such as Fe XIV-XVI, Si IX-X, and Mg X; radiation from the clear disk comes from much less ionized atoms, such as He I-II and O IV, and the helium continuum. The active-region component varies rapidly from day to day in correspondence with the appearance and disappearance of active areas caused by the rotation of the sun and by spot formation; the disk component presumably varies more slowly in the course of the 11-year solar cycle. Since the radiation in the two components is different, we must expect the atmosphere to react in a different manner to each of them — and this is actually observed. The 10.7-cm solar flux F is generally used as a readily available index of solar EUV radiation. It also consists of a disk component and an active-area component, which can be separated statistically by relating the observed values of the flux integrated over the whole solar disk to the corresponding sunspot numbers (Hachenberg, 1965) or, better, to sunspot areas (Jacchia and Slowey, 1973). When the 10.7-cm flux increases, there is an increase in the temperature of the thermosphere and exosphere; for a given increase in the disk component, however, the temperature increases much more than for the same increase in the active-area component. Separate values of the two components of the solar flux are not readily available; fortunately, we have found (Jacchia and Slowey, 1973) that the disk component is, for all practical purposes, linearly related to \overline{F} , the flux averaged, or smoothed, over a few solar rotations. We can, therefore, replace the relation between the temperature and the disk component with an equivalent relation between the temperature and the decimetric solar flux. From an analysis of about 40,000 densities derived from satellite drag in the interval 1958 to 1975, we find that $T_{1/2}$, the arithmetic mean of the global extrema of the diurnal variation in the exospheric temperature under quiet geomagnetic conditions, $K_p = 0$, is related to F and \overline{F} by the equation $$T_{1/2} = 5.48 \overline{F}^{0.8} + 101.8 F^{0.4}$$ (20) F and \overline{F} are in the customary units of 10^4 Jansky (10^{-22} W m⁻² Hz⁻¹ bandwidth). For a better definition of $T_{1/2}$, see Section 3, including the warning note. In our analysis, we took for \overline{F} the average of F over six solar rotations. A smoother version of \overline{F} , which we consider superior and definitely recommend, is obtained by taking a weighted mean of F, in which the weight is a gaussian function of time: $$\overline{\mathbf{F}} = \frac{\sum \mathbf{W} \mathbf{F}}{\sum \mathbf{W}} \quad , \tag{21}$$ with $$w = \exp\left[-\left(\frac{t - t_0}{\tau}\right)^2\right] . \tag{22}$$ Here, t is time and t_0 the instant for which we want to compute \overline{F} . A recommended value of τ is three solar rotations, or 71 days. The variation of $T_{1/2}$ as a function of \overline{F} is illustrated in Figure 4, where the extrema of the diurnal variation are also shown. In Table 4, values of \overline{F} computed with equations (21) and (22) are given at 10-day intervals from 1958 to 1976. Table 5 compares the temperatures of the present models (J) with those of the models of Thuillier, Falin, and Wachtel (1976) (T) and Hedin <u>et al.</u> (1974) (H) for the same values of \overline{F} when $F = \overline{F}$ and $K_p = 0$. It should be remembered that the temperatures of Thuillier <u>et al.</u> are Doppler temperatures, those of Hedin <u>et al.</u> are N_2 temperatures, and those of the present model are mainly atomic oxygen temperatures. Figure 4. Mean global exospheric temperature $T_{1/2}$ for quiet geomagnetic conditions $(K_p=0)$ as a function of the smoothed 10.7-cm solar flux $[F=\overline{F}$ in equation (20)]. Also given are the corresponding extrema of the global diurnal temperature variation at the time of solstices and equinoxes. REPRODUCIBILITY OF THE OSCIGINAL PAGE IS POOR | | Table | 4. T | he smo | othed 10. | 7-cm | solar flux | F, c | omputed | from e | equations | (21) and | 1 (22). | | |--------|--------|----------------|----------|-----------|--------|------------|-------|---------|--------|--------------------|----------|---------|--------| | M.J.D. | FLUX | 24276 | 22/ /5 | 24020 | 197.59 | 37330 | 114.87 | 37830 | 92.50 | 38330 | 80.53 | 38830 | 74.12 | 39330 | 106.50 | | | 234.45 | 36830
36840 | | 37340 | 112.34 | 37840 | 91.33 | 38340 | | | 74,30 | 39340 | 107.55 | | 36340 | 233.80 | | | 37350 | 110.40 | 37850 | 90.18 | 38350 | | | 74.62 | 39350 | 108.33 | | 36350 | 233.09 | 36850 | | | 108.64 | 37860 | 89.04 | 38360 | | | 75.01 | 39360 | 109.03 | | 36360 | 232,56 | 36860 | | 37370 | 107.69 | 37870 | 88.10 | 38370 | | | 75.42 | 39370 | 109.85 | | 36370 | 232.45 | 36870 | 184,23 | | _ | | _ | | _ | | - | 20300 | 110,45 | | 36380 | 232.61 | 36880 | 182,04 | 37380 | 106.80 | 37880 | 87.20 | 38380 | | | 75.87 | 39380 | 111.18 | | 36390 | 232.64 | 36890 | 180,30 | 37390 | 106.33 | 37890 | 86.55 | 38390 | | | 76.33 | 39390 | | | 36400 | 233.04 | | 178.94 | 37400 | 106.33 | 37900 | 86.06 | 38400 | | | 76.75 | 39400 | 112.02 | | 36410 | 233.76 | 36910 | 178.24 | | 106.55 | 37910 | 85.60 | 38410 | | | 77.11 | 39410 | 112.98 | | 36420 | 233.89 | 36920 | 176,95 | 37420 | 106.90 | 37920 | 85.22 | 38420 | 74.49 | . 38920 | 77.40 | 39420 | 114.21 | | 24420 | 22/ 10 | 36930 | 175.97 | 37430 | 107.65 | 37930 | 84.96 | 38430 | 74.22 | . 38930 | 77.62 | 39430 | 115,89 | | 36430 | 234.18 | 36940 | | 37440 | 108.32 | 37940 | 84.45 | 38440 | | | 77.73 | 39440 | 117.36 | | 36440 | 234.12 | 36950 | | | 109.16 | 37950 | 84.02 | | | | 77.74 | 39450 | 119.40 | | 36450 | 233.59 | | | | 110.03 | 37960 | 83.57 | 38460 | | | 77.73 | 39460 | 121.72 | | 36460 | 232.57 | 36960 | | | 110.66 | 37970 | 82.81 | 38470 | | | 77.67 | 39470 | 124.19 | | 36470 | 231.41 | 36970 | 170,44 | 3(410 | 1.0,00 | 31710 | 02.00 | | | | · | | | | 36480 | 230,28 | 36980 | 168.96 | 37480 | 111.31 | 37980 | 82.21 | 38480 | 73,33 | 38980 | 77.57 | 39480 | 126.93 | | 36490 | 229.06 | 36990 | | 37490 | 111.63 | 37990 | 81.43 | | | | 77.51 | 39490 | 129.85 | | 36500 | 227.95 | 37000 | | | 111,57 | 38000 | 80.65 | | 72,87 | 39000 | 77.48 | 39500 | 132,31 | | 36510 | 226.99 | 37010 | | | 111.52 | 38010 | 79.97 | | | | 77.43 | 39510 | 134.74 | | 36520 | | 37020 | | | 110.67 | 38020 | 79.38 | | | | 77.33 | 39520 | 137,02 | | 38320 | 226.39 | 3,020 | ***** | 3,30 | | | | | | • | | | 120 76 | | 36530 | 226.28 | 37030 | 164,34 | 37530 | 109.66 | 38030 | 78.80 | | | | 77.30 | 39530 | 138.74 | | 36540 | 226.27 | 37040 | | 37540 | 108,52 | 38040 | 78.44 | | | | 77.23 | 39540 | 140,13 | | 36550 | 226.22 | 37050 | | 37550 | 106.75 | 38050 | 78.17 | 38550 | | 39050 | 77.20 | 39550 | 141.07 | | 36560 | 226.53 | 37060 | | 37560 | 105,00 | 38060 | 78.07 | 38560 | | | 77.28 | 39560 | 141.48 | | 36570 | 226.67 | 37070 | | 37570 | 103.03 | 38070 | 78.10 | 38570 | 71.00 | 39070 | 77.33 | 39570 | 141.57 | | | | | | | .00 -/ | 2-2-0 | 7- 27 | 38580 | 70.87 | 39080 | 77.50 | 39580 | 141.43 | | 36580 | 226.45 | 37080 | | 37580 | 100.96 | 38080 | 78.37 | | | | 77.81 | 39590 | 140.90 | | 36590 | 226,23 | 37090 | | 37590 | 99.01 | 38090 | 78.64 | | | | 78.27 | 39600 | 140,47 | | 36600 | 225.91 | | 167.43 | 37600 | 97.24 | 38100 | 79.11 | | | | 78.94 | 39610 | 139.91 | | 36610 | 224,72 | 37110 | | 37610 | 95.49 | 38110 | 79.72 | | | | 79.69 | 39620 | 139,42 | | 36620 | 223.90 | 37120 | 167.88 | 37620 | 94.16 | 38120 | 80.42 | 38620 | 70.82 | | | | | | 36630 | 222.92 | 37130 | 167.62 | 37630 | 93,16 | 38130 | 81.07 | 38630 | 70.92 | 39130 | 80,67 |
39630 | 139,28 | | 36640 | 222.07 | 37140 | | 37640 | 92,41 | 38140 | 81.71 | | | | 81.65 | 39640 | 139,20 | | 36650 | 221.29 | 37150 | | 37650 | 92.10 | 38150 | 82.33 | | 71.19 | 39150 | 82.87 | 39650 | 139.53 | | 36660 | 220.64 | 37160 | | 37660 | 92,01 | 38160 | 82.82 | | 71.41 | 39160 | 84.23 | 39660 | 139.97 | | 36670 | 220.00 | 37170 | | 37670 | 92.27 | 38170 | 83.18 | | 71.58 | 39170 | 85.53 | 39670 | 140.37 | | 36010 | 220,00 | 3,4, | | | | | | | | | | 30400 | 141.46 | | 36680 | 219.43 | 3718 | 0 162.06 | 37680 | 92.81 | 38180 | 83.38 | | | | 87.13 | 39680 | | | 36690 | 219.15 | 3719 | | 37690 | 93,38 | 38190 | 83.46 | 38690 | | | 88,52 | 39690 | | | 36700 | 218.79 | | 0 157.14 | 37700 | 94.12 | 38200 | 83.42 | 38700 | 72.34 | | | 39700 | | | 36710 | 218.48 | 3721 | | 37710 | 94,90 | 38210 | 83.29 | | 72.60 | | 91.66 | 39710 | | | 36720 | 218.25 | | 0 151.29 | 37720 | 95.52 | 38220 | 83.12 | 38720 | 72.8 | 5 39220 | 93.11 | 39720 | 142.87 | | | | | | | | | | | | . 20230 | 94.64 | 39730 | 143.06 | | 36730 | 218.01 | 3723 | | 37730 | 96.14 | 38230 | 82.9 | | | 8 39230
D 39240 | | 39740 | | | 36740 | 217.66 | 3724 | | | 96.67 | | 82.84 | | | | | 39750 | | | 36750 | 217.39 | 3725 | | 37750 | 96.94 | | 82.70 | | | | | 39760 | | | 36760 | 216,52 | 3726 | | 37760 | 97.09 | 38260 | 82.6 | | | | | | | | 36770 | 215.11 | 3727 | 0 134.45 | 37770 | 97.07 | 38270 | 82.5 | 38770 | 73,6 | 7 39270 | 77.77 | 39110 | 24464 | | | 212 (6 | 2772 | 0 130,95 | 37780 | 96.74 | 38280 | 82.4 | 2 38786 | 73.7 | 0 39280 | 101.19 | 39780 | 144.46 | | 36780 | | 3728 | | | | | 82.2 | | | | | 39790 | | | 36790 | | 3729 | | | | | 81.9 | | | | | 39800 | | | 36800 | | 3730 | | | | | 81.6 | | | | | 39810 | 149.73 | | 36810 | | | 0 120.66 | | | | 81.1 | | | | | 39820 | 152.16 | | 36820 | 201.39 | 3/32 | 0 117.56 | 31820 | 33,03 | (| | | • • | Table 4. (Cont.) | M.J.D. | FLUX |--------|---------------|--------|---------------|--------|--------|--------|--------|--------|----------------|--------|-------|--------|-------| | 39830 | 154.45 | 40280 | 155.07 | 40730 | 161.33 | 41180 | 112.18 | 41630 | 108.99 | 42080 | 81.56 | 42530 | 72.84 | | 3984C | 156.85 | 40290 | 156.23 | 40740 | 160.13 | 41190 | 111.92 | 41640 | 107.42 | 42090 | 81.80 | 42540 | 73.31 | | 39850 | 158.74 | 40300 | 157,16 | 40750 | 159.08 | 41200 | 111.48 | 41650 | 105.92 | 42100 | 82.19 | 42550 | 73.80 | | 39860 | 159.91 | 40310 | 158.01 | 40760 | 157.91 | 41210 | 111.34 | 41660 | 104.66 | 42110 | 82.68 | 42560 | 74.56 | | 39870 | 160.59 | 40320 | 158.20 | 40770 | 156.39 | 41220 | 111.17 | 41670 | 103.40 | 42120 | 83.45 | 42570 | 75.48 | | | | | - | | | | , | -1010 | 103,40 | 42120 | 03,43 | 42310 | 13,40 | | 39880 | 160.58 | 40330 | 158,19 | 40780 | 154.82 | 41230 | 111.08 | 41680 | 102.37 | 42130 | 84.14 | 42580 | 76.51 | | 39890 | 159.65 | 40340 | 158,19 | 40790 | 153.36 | 41240 | 111.41 | 41690 | 101.57 | 42140 | 85.10 | 42590 | 77.57 | | 39900 | 158.40 | 40350 | 157.44 | 40800 | 152,00 | 41250 | 111.78 | 41700 | 100.89 | 42150 | 85.89 | 42600 | 78.57 | | 39910 | 156.71 | 40360 | 156.69 | 40810 | 150.77 | 41260 | 112.30 | 41710 | 100.45 | 42160 | 86.81 | 42610 | 79.55 | | 39920 | 154.67 | 40370 | 155.80 | 40820 | 149.81 | 41270 | 113.15 | 41720 | 100.27 | | 87.61 | 42620 | 80,30 | | 39930 | 152.61 | 40380 | 154.53 | 40830 | 149.10 | 41280 | 114.00 | 41730 | 99.92 | 42180 | 88.23 | 42630 | 80.85 | | 39940 | 150.85 | 40390 | 153.29 | 40840 | 148.89 | 41290 | 115.11 | 41740 | 99.96 | 42190 | | | | | 39950 | 149.30 | 40400 | 151.81 | 40850 | 148.86 | 41300 | 116.24 | 41750 | | | 88.92 | 42640 | 81.15 | | 39960 | 147.92 | 40410 | 150.31 | | 148.87 | 41310 | 117.49 | 41760 | 99.84 | 42200 | 89.31 | 42650 | 81.23 | | 39970 | 147.13 | 40420 | 149.03 | 40870 | 149.24 | 41320 | | | 99.68 | 42210 | 89.63 | 42660 | 81.01 | | -,, | • • • • • • • | 70120 | . 4 , , 6 0 3 | 44810 | 177617 | 41320 | 118.93 | 41770 | 99.69 | 42220 | 89.88 | 42670 | 80.55 | | 39980 | 146.55 | 40430 | 147.73 | 40880 | 149.61 | 41330 | 120.21 | 41780 | 99.33 | 42230 | 89.98 | 42680 | 79.97 | | 39990 | 146.29 | 40440 | 146.64 | 40890 | 149.90 | 41340 | 121.57 | 41790 | 98.91 | 42240 | 90.04 | 42690 | 79.29 | | 40000 | 146.21 | 40450 | 145.67 | 40900 | 150.11 | 41350 | 122.92 | 41800 | 98.46 | 42250 | 90.06 | 42700 | 78.53 | | 40010 | 146.15 | 40460 | 145,13 | 40910 | 149.89 | 41360 | 123.84 | 41810 | 97.79 | 42260 | 89.99 | 42710 | 77,76 | | 40020 | 146.25 | 40470 | 144.90 | 40920 | 149.62 | 41370 | 124.69 | 41820 | 97.03 | 42270 | 90.00 | 42720 | 77.01 | | | | | | 10,20 | ,, | 41370 | 124.07 | 41850 | 91.03 | 42210 | 90.00 | 42720 | 11.01 | | 40030 | 146.10 | 40480 | 145.00 | 40930 | 148.91 | 41380 | 125,41 | 41830 | 96.34 | 42280 | 89.94 | 42730 | 76.28 | | 40040 | 145.85 | 40490 | 145.21 | 40940 | 147.66 | 41390 | 125.90 | 41840 | 95.29 | 42290 | 89.81 | 42740 | 75.63 | | 40050 | 145.77 | 40500 | 145.67 | 40950 | 145,99 | 41400 | 126.46 | 41850 | 94.54 | 42300 | 89.70 | 42750 | 74.98 | | 40060 | 145.50 | 40510 | 146.47 | 40960 | 144.00 | 41410 | 126.90 | 41860 | 93.76 | 42310 | 89.47 | 42760 | 74.39 | | 40070 | 145.49 | 40520 | 147.08 | 40970 | 141.56 | 41420 | 127.11 | 41870 | 93.08 | 42320 | 89.11 | 42770 | 73.89 | | 40080 | 145.10 | 40530 | 147.71 | 40980 | 139.09 | 41430 | 127.54 | 41880 | 03 43 | 42330 | 00.43 | 42700 | 72 44 | | 40090 | 145.01 | 40540 | 148.60 | 40990 | 135.96 | 41440 | 128.00 | 41890 | 92.62
92.18 | | 88.62 | 42780 | 73.46 | | 40100 | 144.93 | 40550 | 149.42 | | 133.06 | 41450 | 128.36 | | | 42340 | 87.90 | 42790 | 73.18 | | 40110 | 144.53 | 40560 | 150.46 | 41010 | 129.98 | | | 41900 | 91.88 | 42350 | 87.02 | 42800 | 72,97 | | | 144.44 | 40570 | 151.45 | 41020 | | 41460 | 128.85 | 41910 | 91.60 | 42360 | 86.05 | | | | 40220 | | 40370 | 134,43 | 41020 | 127.05 | 41470 | 129.02 | 41920 | 91.29 | 42370 | 84.82 | | | | 40130 | 144.30 | 40580 | 152,65 | 41030 | 124.29 | 41480 | 129,08 | 41930 | 90.92 | 42380 | 83,63 | | | | 40140 | 144.23 | 40590 | 154.07 | 41040 | 121.92 | 41490 | 128.84 | 41940 | 90.53 | 42390 | 82.26 | | | | 40150 | 144.39 | 40600 | 155.33 | 41050 | 119.68 | 41500 | 128.32 | 41950 | 89.84 | 42400 | 80.89 | | | | 40160 | 144.38 | 40610 | 156.71 | 41060 | 117.80 | 41510 | 127.58 | 41960 | 89.14 | 42410 | 79.60 | | | | 40170 | 144.66 | 40620 | 158,21 | 41070 | 116.31 | 41520 | 126.62 | 41970 | 88.25 | 42420 | 78.41 | | | | 40180 | 144.74 | 40630 | 159.44 | 41080 | 115.10 | 41530 | 125.31 | 41980 | 07 10 | /2/20 | 77 10 | | | | 40190 | 145.01 | 40640 | 160.54 | 41090 | 114.21 | | | | 87.18 | 42430 | 77.18 | | | | 40200 | 145.58 | 40650 | 161.57 | | 113.70 | 41540 | 123.91 | 41990 | 86.27 | 42440 | 76.13 | | | | 40210 | 146.25 | 40660 | 162.19 | 41110 | | 41550 | 127.48 | 42000 | 85.24 | 42450 | 75.19 | | | | 40220 | | | | | 113.14 | 41560 | 120.81 | 42010 | 84.35 | 42460 | 74.37 | | | | 40220 | 147.02 | 40670 | 162,74 | 41120 | 112.98 | 41570 | 119.24 | 42020 | 83.56 | 42470 | 73.72 | | | | 40230 | 148.25 | 40630 | 163,10 | 41130 | 112.85 | 41580 | 117.58 | 42030 | 82.84 | 42480 | 73.20 | | | | 40240 | 149.32 | 40690 | 163,01 | 41140 | 112.76 | 41590 | 115.85 | 42040 | 82.31 | 42490 | 72.82 | | | | 40250 | 150.74 | 40700 | 163.05 | | 112.68 | 41600 | 114,12 | 42050 | 81.88 | 42500 | 72.56 | | | | 40260 | 152.27 | 40710 | 162.52 | | 112.70 | 41610 | 112.38 | 42060 | 81.65 | 42510 | 72.51 | | | | | 153.62 | | 161.97 | | 112.40 | | 110.63 | 42070 | 81.55 | 42520 | 72,60 | | | | | | , - 3 | | | | -1014 | | 72010 | 0.000 | 45350 | | | | Table 5. Comparison of exospheric temperatures as a function of the smoothed 10.7-cm solar flux \overline{F} . | F | T _{1/2} (°K) | | | | | | | | | |----------------|-----------------------|--------|--------|--|--|--|--|--|--| | - . | . 1 | Т | Н | | | | | | | | 70 | 720.9 | 784.2 | 864.0 | | | | | | | | 100 | 860.5 | 865.4 | 944.2 | | | | | | | | 150 | 1057.2 | 1000.8 | 1078.0 | | | | | | | | 200 | 1227.4 | 1136.2 | 1212.0 | | | | | | | | 250 | 1380.7 | 1271.6 | 1345.4 | | | | | | | | 300 | 1522.2 | 1406.9 | 1479.2 | | | | | | | These three temperature curves are shown in Figure 5. As can be seen, the slope of the J curve is greater than that of the straight lines T and H. For $\overline{F} = 103$, the J temperatures are the same as T, while for $\overline{F} = 175$, they are the same as H. It should be remarked that the slopes of both the H and the T models were derived from relatively short time intervals during 1969 to 1971, when solar activity hovered around a flat maximum without large changes, whereas that of the J models was derived from a 17-year interval that comprised two periods of minimum solar activity and two maxima, of which one was the highest in 200 years. The reaction of the exospheric temperature to a change in F is not instantaneous. We find (Jacchia, Slowey, and Campbell, 1973) a lag Δt that varies from 0.9^d at 12^h noon local solar time (LST) to 1.6^d at 0^h LST according to the equation $$\Delta t = 1.26 + 0.37 \sin (H - 92^{\circ}) ,$$ $$\pm .12 \pm .17 \pm 25$$ (23) where H is the hour angle of the sun, i.e., LST + 12^h. According to Paul, Volland, and Roemer (1974), the lag is a little greater, although almost exactly in phase with the above expression: $$\Delta t = 1.74 + 0.26 \cos H$$. Figure 5. Comparison between the temperatures of the present models (J) with those of the models of Thuillier et al. (1976) (T) and Hedin et al. (1974) (H) as a function of the smoothed 10.7-cm solar flux \overline{F} , for $F = \overline{F}$ and $K_p = 0$. #### 3. THE DIURNAL VARIATION Our approach in dealing with the diurnal variation follows, in its main lines, the pattern established in our previous models, although a higher degree of sophistication is required to represent the recently discovered height-dependent phase shifts in the variation of the individual atmospheric species. We shall still consider the phenomenon of the diurnal variation
in its global aspect, giving equations valid for the whole earth, from which the variation for any given latitude and season can be derived as a particular case. At any instant, the global distribution of the exospheric temperatures will show a nighttime minimum T_0 and a daytime maximum T_M , in opposite hemispheres; let their arithmetic mean be $T_{1/2}$. In previous models, we had taken T_0 as the basic temperature to relate to the solar flux F and to use in the equations defining the daily variation. Here we shall use $T_{1/2}$ instead. In the older models, we had assumed that the ratio T/T_0 could be expressed as $T/T_0 = 1 + RD$, where R is a constant, $D = \sin^m \theta + (\cos^m \eta - \sin^m \theta)$ f(H) and $\eta = \frac{1}{2} \left| \phi - \phi_M \right|$; $\theta = \frac{1}{2} \left| \phi + \phi_M \right|$, ϕ being the latitude of a given point and ϕ_M the latitude of the point where the maximum daily temperature occurs; m is a constant close to 2, and f(H) a function of the hour angle H of the sun that varies between the limits 0 and 1. When m = 2, the expression for D reduces to $$D = \frac{1}{2} \sin \phi_{M} \sin \phi + \cos \phi_{M} \cos \phi f(H) .$$ As we can see, D consists of two terms, of which the first is seasonal-latitudinal and thus independent of local time. The two terms are mutually constrained by the presence of $\sin \phi_M$ in the first and $\cos \phi_M$ in the second, thus making the seasonal-latitudinal term dependent on the diurnal term. In the present models, we shall eliminate this unnecessary constraint and express $T/T_{1/2}$ as follows: $$\frac{T}{T_{1/2}} = 1 + c_1 \frac{\delta_{\odot}}{\epsilon} \sin \phi + c_2 \cos \phi \left[f(H) - \frac{1}{2} \right] , \qquad (24)$$ where c_1 and c_2 are two constants, δ_{\odot} is the declination of the sun, and ϵ is the obliquity of the ecliptic, 23.44; f(H) determines the shape of the diurnal temperature curve. We find that both the N_2 temperature curve (Mayr, Hedin, Reber, and Carignan, 1974) and the Doppler temperature curve (Thuillier et al., 1976), obtained from two separate experiments on the OGO 6 satellite, can be remarkably well represented by an equation of the form $$f(H) = \cos^3 \frac{1}{2} (H + \beta) + c_3 \cos [3(H + \beta) + \chi]$$ (25) For the N_2 temperature curve, $\beta = -50^{\circ}$ and $c_3 = 0.14$; for the Doppler temperature curve, $\beta = -72^{\circ}$ and $c_3 = 0.08$; for both, $\chi = -75^{\circ}$. The difference in β results in a phase difference of 1.5 hours between the two temperature curves, but this will be of no immediate concern to us, as we shall presently see. A fit of equation (24) to the spherical-harmonics model by Thuillier et al. (1976) yields $c_1 = 0.15$ and $c_2 = 0.24$. It is noteworthy that, assuming $c_1 = 0.15$, we obtain exactly the same value of c_2 , i.e., 0.24, from a least-squares analysis of 30,373 densities derived from the drag of six satellites with perigee heights between 350 and 850 km: this leads to the important conclusion that the Doppler temperatures also account very well for the amplitude of the diurnal variation of atomic oxygen. We have therefore adopted the values $$c_1 = 0.15$$, $c_2 = 0.24$, $c_3 = 0.08$. As for β , the value -72° derived from the Doppler temperatures gives a minimum temperature at 6.2 and a maximum at 17.6 LST, both about 1.5 hours later than incoherent-scatter temperatures (McClure, 1969, 1971; Carru and Waldteufel, 1969; Salah and Evans, 1973). Since the phase of the Doppler temperature, according to Thuillier et al., is very strongly affected by the way the observational material is screened, we prefer to lean in the direction of incoherent-scatter temperatures and have adopted $\beta = -60^{\circ}$, which gives a minimum at 5.4° and a maximum at 16.8° LST. The OGO 6 mass-spectrometer analysis (Mayr et al., 1974) has revealed that the density of each atmospheric constituent peaks at a different hour of the day. A comparison with the lower altitude San Marco 3 data (Newton, Kasprzak, Curtis, and Pelz, 1975) shows that the phase shift varies with height, while satellite-drag analysis (Jacchia, Campbell, and Slowey, 1973) indicates that the total density always peaks at the same time, independently of height. To describe such behavior, we must make β variable (Jacchia, 1974) in equation (25): $$\beta_{\mathbf{i}} = \beta_0 + \beta_1 \left(\frac{\overline{\mathbf{M}}}{\overline{\mathbf{M}}_{\mathbf{i}}} - 1 \right) \quad , \tag{26}$$ where β_0 and β_1 are two constants, \overline{M} is the mean molecular mass, and M_i is the mass of the atmospheric species i (hydrogen excluded); \overline{M} can be evaluated from the models as a function of z and $T_{1/2}$. For the two constants, we have adopted $$\beta_0 = -35^{\circ}$$, $\beta_1 = 27^{\circ}$. Each β_i defines a different $f_i(H)$, so that in equation (24), we are presented with a new parameter, a pseudo-temperature Θ_i , different for each species i: $$\frac{\Theta_{\mathbf{i}}}{T_{1/2}} = 1 + 0.15 \frac{\delta_{\bigcirc}}{\epsilon} \sin \phi + 0.24 \cos \phi \left[f_{\mathbf{i}}(\mathbf{H}) - \frac{1}{2} \right]$$ (27) with $$f_i(H) = \cos^n \frac{1}{2} (H + \beta_i) + 0.08 \cos [3(H + \beta_i) - 75^\circ]$$ and $$n = 2 + \cos^2\left(\frac{\phi^2}{90^\circ}\right) .$$ Here we have replaced the exponent 3 in equation (25) with a variable exponent n, which decreases from 3 at the equator to 2 at the poles (where the diurnal term vanishes). This device (Jacchia, 1973) eliminates a discontinuity in $dT/d\phi$ (or $d\Theta_i/d\phi$) at the poles – a feature that seems to have caused some discomfiture to a few investigators (Blum and Harris, 1973). Figure 6 shows the diurnal variation of the exospheric temperature at the equator at the time of the equinoxes when $T_{1/2}=1000~\rm K$. The global distribution of exospheric temperatures for quiet geomagnetic conditions ($K_p=0$) for the equinoxes and for the June solstice is given in Table 6 and illustrated in Figure 7. The variation with height in the hour of the maximum density of the individual constituents is shown in Figure 8. Figure 6. The diurnal variation of the exospheric temperature at the equator at the time of equinoxes, when $T_{1/2} = 1000$ K, represented by the heavy curve. The light curve represents the variation minus the terdiurnal term. Table 6. Global distribution of exospheric temperatures at the time of the equinoxes and of the June solstice. | 54 | 0001 | 977
962 | 948
936 | 927 | 920 | 916 | 915 | 916 | 920 | 927 | 936 | 948 | 296 | 977 | 066 | 1000 | |-----------|--------------|----------------------|------------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 23 | 1000 | 981
968 | 955 | 935 | 929 | 956 | 925 | 956 | 929 | 935 | 446 | 955 | 968 | 981 | 992 | 1000 | | 25 | 966 | 989
980 | 970
961 | 954 | 950 | 244 | 946 | 947 | 950 | 954 | 961 | 970 | 980 | 989 | 966 | 1000 | | 21 | 1000 | 1001
998 | 993 | 986 | 984 | 983 | 983 | 983 | 984 | 986 | 686 | 993 | 966 | 1001 | 1002 | 1000 | | 50 | 1000 | 1016
1020 | 1023 | 1027 | 1029 | 1030 | 1031 | 1030 | 1029 | 1027 | 1025 | 1023 | 1020 | 1016 | 1009 | 1000 | | 19 | 1000 | 1030
1043 | 1053 | 1069 | 1074 | 1078 | 1079 | 1078 | 1074 | 1069 | 1061 | 1053 | 1043 | 1030 | 1016 | 1000 | | 18 | 1000 | 1041
1059 | 1075 | 1100 | 1108 | 1113 | 1115 | 1113 | 1108 | 1100 | 1089 | 1075 | 1059 | 1041 | 1021 | 1000 | | 11 | 1000 | 1045
1066 | 1084 | 1113 | 1123 | 1129 | 1131 | 1129 | 1123 | 1113 | 1100 | 1084 | 1066 | 1045 | 1023 | 1000 | | 91 | 1000 | 1043
1062 | 1080 | 1108 | 1117 | 1123 | 1125 | 1123 | 1117 | 1108 | 1096 | 1080 | 1062 | 1043 | 1022 | 1000 | | Š | 1000 | 1036
1053 | 1067 | 1090 | 1098 | 1103 | 1104 | 1103 | 1098 | 1090 | 1080 | 1067 | 1053 | 1036 | 1018 | 1000 | | 7 | 1000 | 1028
1040 | 1051 | 1068 | 1073 | 1077 | 1078 | 1017 | 1073 | 1068 | 1060 | 1051 | 1040 | 1028 | 1015 | 1000 | | 13 | 1000
1012 | 1021
1029 | 1036 | 1046 | 1050 | 1052 | 1053 | 1052 | 1050 | 1046 | 1041 | 1036 | 1029 | 1021 | 1012 | 1 n00 | | 12 | 1000 | 101 6
1020 | 1023 | 1027 | 1029 | 1030 | 1031 | 1030 | 1029 | 1027 | 1025 | 1023 | 1020 | 1016 | 1009 | 1000 | | 11 | 1000 | 1010
1011 | 1010 | 1009 | 1009 | 1009 | 1009 | 1009 | 1009 | 1009 | 1009 | 1010 | 101 | 1010 | 1006 | 1000 | | 10 | 1000 | 1002
998 | 994 | 986 | 985 | 984 | 983 | 984 | 985 | 986 | 989 | 466 | 966 | 1002 | 1002 | 1000 | | ٥ | 1000 | 990 | 972 | 958 | 954 | 952 | 951 | 952 | 954 | 958 | 496 | 972 | 982 | 990 | 166 | 1000 | | co | 1000 | 977 | 948 | 927 | 920 | 916 | 915 | 916 | 920 | 927 | 936 | 946 | 962 | 716 | 066 | 1000 | | . ~ | 1000 | 964 | 927 | 900 | 891 | 988 | 884 | 886 | 891 | 006 | 912 | 927 | 945 | 964 | 983 | 1000 | | • | 1000
978 | 956
934 | 915 | 884 | 874 | 898 | 866 | 868 | 874 | 884 | 897 | 915 | 934 | 956 | 978 | 1000 | | ß | 1000 | 954
932 | 913 | 882 | 872 | 866 | 864 | 866 | 872 | 882 | 896 | 913 | 932 | 954 | 477 | 1000 | | • | 1000
978 | 957 | 920 | 892 | 883 | 877 | 875 | 877 | 883 | 892 | 904 | 920 | 938 | 957 | 978 | 1000 | | m | 1000 | 943 | 930 | 905 | 897 | 892 | 890 | 892 | 897 | 905 | 916 | 930 | 945 | 963 | 981 | 1000 | | 8 | 1000 | 969
953 | 938 | 916 | 606 | 706 | 903 | 906 | 606 | 916 | 926 | 938 | 953 | 696 | 985 | 1000 | | 7 | 1000 | 973
958 | 944 | 922 | 916 | 911 | 910 | 911 | 916 | 922 | 932 | 946 | 958 | 973 | 988 | 1000 | | | 80° | 70. | 00.4 | 30 | 20 | 10 | 0 | 10 | -20- | -30 | -40 | -50 | -60 | -70 | -80 | -06- | 00.0 DECLINATION OF SUN = | | | 0 | ~ | 8 | 25 | 6 | (" | | 2 (| 7. | 42 | 2 | ç | | 6.0 | 7 9 | 2 | 34 | 33 | 45 | 9 (| y (| Š | |----------------|------------|------|------|-------|-----------|-----------|---------|-------|------|------|-------|-------|------|------|------|-------|-------
------|-------|-----|-----|------------|-----| | | 77 | | | 1118 | • | 23 | | | 1122 | 22 | | | 1130 | 21 | 1150 | 1150 | 1142 | 1128 | 1108 | 1004 | | 1001 | 1036 | 1010 | 983 | | | 933 | 911 | 893 | 878 | 868 | 1 | 20. | 824 | 820 | | | 50 | 1150 | 1157 | 1157 | 1150 | 1138 | 1 1 3 3 | 7711 | 1102 | 1080 | 1057 | 1631 | | 001 | 978 | 952 | 929 | 906 | 008 | | 20 | 861 | 850 | | | 19 | 1160 | 1164 | 1171 | 1172 | 1168 | | 0011 | 1144 | 1125 | 1104 | 1070 | | 7601 | 1023 | 466 | 965 | 938 | - | | 889 | 868 | 850 | | | 18 | 1150 | 2 2 | 1182 | 1180 | 0 | | C 0 1 | 1175 | 1159 | 1139 | - 2 | | 201 | 1057 | 1025 | 992 | 960 | 020 | , | 90 | 873 | 850 | | | 11 | 1150 | 1120 | 1186 | 1 2 0 4 | 100 | | 611 | 1188 | 1174 | 1155 | 1131 | | 7011 | 101 | 1038 | 1004 | 696 | 46.0 | 10 | 406 | 875 | 850 | | | 91 | 0311 | 1160 | 1184 | 1102 | 105 | 1 | 7611 | 1183 | 1169 | 1149 | 1 2 5 | | 1601 | 1066 | 1033 | 666 | 965 | 033 | 10 | 706 | 874 | 850 | | 23.44 | 15 | 9 | 1150 | 1177 | 1192 | 1102 | 9 1 | 9/11 | 1165 | 1149 | 1120 | 7011 | | 1011 | 1047 | 1015 | 984 | 952 | 200 | , | 895 | 871 | 850 | | 23 | 14 | | 271 | 7911 | 7 2 2 2 | 771 | 0011 | 1157 | 1143 | 1124 | 1103 | 000 | 0101 | 1021 | 1022 | 666 | 490 | 936 | | 1 1 | 887 | 867 | 850 | | | 13 | į. | 2411 | 6011 | 1150 | 1161 | | 1138 | 1121 | 1101 | 1078 | 2 2 2 | 60.1 | 1026 | 866 | 971 | 945 | 921 | | 2 | 881 | 864 | 850 | | 11
Z | 15 | | 1150 | 1157 | 200 | 1130 | 0011 | 1122 | 1102 | 1080 | 1057 | | 1001 | 1004 | 978 | 952 | 929 | 000 | | 9 | 875 | 861 | 850 | | OF SUN | : | | 1150 | 1124 | 1771 | 1100 | 6711 | 1106 | 1084 | 1060 | 1035 | | 7001 | 983 | 95B | 934 | 913 | 805 | | 48 | 869 | 859 | 850 | | SECLINATION OF | 01 | | 1150 | 0611 | 0 0 0 0 0 | 0711 | 8011 | 1086 | 1061 | 1036 | 1010 | 2 6 | 2 | 958 | 933 | 911 | 803 | 870 | | 202 | 861 | 855 | 850 | | CL I NA | o • | 1 | 1150 | ***11 | 1611 | 1111 | 801 | 1061 | 1033 | 1005 | 0.0 | | 42 | 925 | 903 | 883 | 868 | 957 | | 30R | 849 | 849 | 850 | | 9 | 00 | | 1150 | 113/ | 9111 | 7601 | 1003 | 1033 | 1002 | 972 | 270 | 776 | 616 | 890 | 869 | 852 | 0440 | 76.0 | | 833 | 836 | 845 | 850 | | | ~ | | 1150 | 1131 | 6011 | | 7401 | 1008 | 975 | 040 | | 1 6 | 488 | 960 | 840 | 825 | 9 1 6 | 2 2 | 1 1 | 613 | 823 | 835 | 850 | | | • | 1 | 1150 | 1126 | 601 | 100 | 1029 | 964 | 950 | 0.0 | | | 800 | 842 | 822 | 800 | 00 | 0 | | 804 | 815 | A31 | 850 | | | 2 | • | 1150 | 1125 | 6601 | 7901 | 1028 | 992 | 957 | 0 0 | 1 0 | 260 | 864 | 840 | A21 | 407 | 0 | | 0 (| 808 | 813 | 820 | 850 | | | 4 | | 1150 | 1126 | 1098 | 1067 | 1035 | 1001 | 240 | 46 | 1 0 | 0 | 875 | 851 | 83 | 718 | 0 | 9 0 | 0 | 808 | 816 | 931 | 850 | | | М | | 1150 | 1129 | 1104 | 1075 | 1044 | 1012 | 0 80 | 2 0 | 410 | ¥16 | 890 | 866 | 4 | 2 | 000 | 9 6 | 0 1 0 | 816 | 822 | 4 E 0 | 850 | | | 2 | ŀ | 1150 | 1133 | 1110 | 1083 | 1053 | 1022 | | 1 6 | 000 | 930 | 903 | 878 | 7 | 1 4 0 | | 9 0 | 2 0 | 823 | A28 | | 850 | | | p=4 | | 1150 | 1135 | 1114 | 1088 | 1059 | 1028 | 700 | | 0 0 | 156 | 910 | 88.5 | 44 | 7 7 0 | | 0 0 | 679 | 828 | 832 | 0.70 | 850 | | | | | •06 | 80 | 70. | 60 | 20. | 707 | | | • 0 • | 01 | 0 | 10. | | | | | • 20. | -60 | 7.0 | | 00 | a) Equinoxes. Figure 7. Global distribution of the exospheric temperature for quiet geomagnetic conditions (K_p = 0). The coordinates are local solar time and geographic latitude. The modifications introduced by disturbed geomagnetic conditions are illustrated in Figure 10. Figure 8. Local solar time of the maximum density of four atmospheric constituents as a function of height, for $T_{1/2} = 1000$ K. Warning. Densities derived from satellite drag have a limited resolution in local solar time, especially when the orbital inclination is small and when the density scale height at perigee is large — not to speak of small orbital eccentricities, which make the density insensitive to local solar time. This limited resolution will result in a smaller value of c3, the amplitude of the terdiurnal term; also, c2 might be decreased, although to a smaller degree. In some cases, the outright elimination of the terdiurnal term might even be advisable in comparing drag-derived densities with the models. Notice also that, with the introduction of the terdiurnal term, $T_{1/2}$ is no longer the arithmetic mean between the daytime maximum and the nighttime minimum: it is, rather, the arithmetic mean of the extrema of the diurnal term. Diurnal variations of hydrogen. Brinton et al. (1975) have inferred the diurnal variation of hydrogen at 250 km using Atmosphere Explorer C measurements around the December solstice 1974–75. They found a variation by a factor of 2 in the time-dependent component at the equator and at midlatitudes, with a maximum around 3^h LST and a minimum around 16^h or 17^h LST. The time-independent component also shows a variation by a factor of 2, with a maximum in middle-high latitudes in the winter hemisphere and a minimum in high latitudes in the summer hemisphere. All of this is in fair agreement with our models if we enter them with the actual temperature, i.e., if we use equations (26) and (27) with $\beta = \text{const} = -60^\circ$: we obtain a variation by a factor of 2.0 in the time-dependent component and by a factor of 1.6 in the time-independent component [these components are the two terms of equation (24)]. It shows that not only the long-term variations, such as those with the solar cycle, but also the short-term variations can be handled, to a fair degree of approximation, by a hydrogen model in which the density at any given height is controlled by escape. • . ## 4. VARIATIONS WITH GEOMAGNETIC ACTIVITY The formula relating the exospheric temperature to the decimetric solar flux, equation (20), is valid for ideally quiet geomagnetic conditions, $K_p = 0$. In the general case, when $K_p \neq 0$, geomagnetic activity produces a temperature increase Δ_G^T , which depends on magnetic latitude. At the same time, atmospheric composition changes, not only because of the change in scale height induced by Δ_G^T , but also because of a change in the interface between the regimes of mixing and diffusion. In addition, there is a density wave propagating from high to low magnetic latitudes. In this model of the geomagnetic phenomenon in the upper atmosphere, we follow the analytical formulation given by Jacchia, Slowey, and von Zahn (1976, 1977a). Let us denote by Δ_G log n_i the change in the logarithm of the number density of the species i that occurs as K_p changes from zero to a given value. We assume that Δ log n_i is the sum of three separate effects: $$\Delta_{\mathbf{G}} \log \mathbf{n_i} = \Delta_{\mathbf{T}} \log \mathbf{n_i} + \Delta_{\mathbf{H}} \log \mathbf{n_i} + \Delta_{\mathbf{e}} \log \mathbf{n_i} \quad , \tag{28}$$ where Δ_T log n_i is the purely thermal component, originated by the change in scale height caused by the temperature increase $\Delta_G T$. In previous models, we had assumed that Δ_T log n_i can be evaluated from static models by taking the difference between the value of $\log n_i$ that corresponds to the "quiet" $(K_p = 0)$ temperature $T_0(\infty)$ and the one that corresponds to $T_0(\infty) + \Delta_G T_\infty$, $T_0(\infty)$ being the value of T_∞ from equation (24) with $\beta = -60^\circ$. Admittedly this is a shaky assumption, because it implies that the shape of the temperature profiles is not altered by the magnetic disturbance. Since a distortion of the profiles is likely to occur, especially in the 100- to 120-km region, we must expect our model to become poorer as we approach the homopause boundary. The only remedy to such a situation, as we can see it, is to integrate the diffusion equation (16) with new "perturbed" temperature profiles; more about this in Section 4.1. In equation (28), Δ_H log n_i is the contribution caused by a change in the height z_H of the homopause as a consequence of the magnetic disturbance, and Δ_e log n_i is the contribution of the "equatorial wave," the density pileup in the equatorial regions as a consequence of convection toward the equator; it affects all atmospheric constituents by the same amount. ## 4.1 The Thermal Component For a given level of geomagnetic activity, measured by the K_p index, we express the geomagnetic heating, i.e., the increase $\Delta_G T$ in the exospheric temperature above the quiet temperature level corresponding to $K_p = 0$, as a function of the invariant magnetic latitude ϕ_I (McIlwain, 1966), which we have found to give better results than the centered-dipole geomagnetic latitude ϕ' . If ϕ_I is not readily available, ϕ' can be used without too much loss in accuracy. For the convenience of the users of these models, we give here the equation to compute ϕ' assuming geographic coordinates for the north geomagnetic pole of $L=291\,^{\circ}E$, $\phi=+78\,^{\circ}3$: $$\sin \phi' = 0.9792 \sin \phi + 0.2028 \cos \phi \cos (L - 291^{\circ})$$, (29) where L is the longitude counted eastward from Greenwich. To account for the propagation time τ , we have introduced a fictitious index K_p' , equal to K_p at the time t - τ ; for τ , we use $$\tau = 0.1 + 0.2 \cos^2 \phi_{\text{T}} . \tag{30}$$ We then compute $$\Delta_{\mathbf{G}}^{\mathbf{T}}_{\infty} = \mathbf{A} \sin^{\mathbf{m}} \phi_{\mathbf{I}} \quad , \tag{31a}$$ where A = 57.5 K'_p $$\left[1 + 0.027 \exp(0.4 \text{ K'}_p)\right]$$, (T in °K). (31b) We find that m = 4 gives satisfactory results in most cases, but there is some indication that, as the perturbation extends to lower latitudes, m becomes smaller, perhaps as small as 3. As we said earlier, a change in T_{∞} only will not give satisfactory results in the lower thermosphere: it
becomes necessary to modify the whole temperature profile from the boundary upward, adding a correction $\Delta_G T(z)$ to the "quiet" temperatures $T_0(z)$. After some experimenting, we found that an expression of the form $$\Delta_{G} T(z) = \Delta_{G} T_{\infty} \tanh \left[c(z - z_0) \right] , \qquad (z > z_0) , \qquad (32)$$ with a proper selection of the constants c and z_0 , will provide a disturbed temperature profile capable of representing density observations in the 150- to 200-km region without substantially altering the results obtained at greater heights by using a change in the exospheric temperature only. Expressing z in kilometers, values of $$c = 0.006$$, $z_0 = 90$ introduced into equation (32) lead to disturbed densities [equation (28)] that are in reasonable agreement with densities of N₂, Ar, and O observed at 160 km by Philbrick, McIsaac, and Faucher (1976) during a magnetic storm. # 4.2 Effect of a Change in the Height of the Homopause We assume that the temperature increase Δ_G^T is accompanied by a change Δz_H in the height of the homopause, where Δz_H is a strongly nonlinear function of Δ_G^T : $$\Delta z_{H} = 5.0 \times 10^{3} \sinh^{-1} (0.010 \Delta_{G}^{T})$$, (z_H in meters). (33) The mean molecular mass at the height of the homopause is very nearly 28, so we assume that a change in z_H does not affect N₂; for all other constituents, we have $$\Delta_{\mathbf{H}} \log \mathbf{n_i} = \left[\frac{\partial \log \mathbf{n(N_2)}}{\partial \mathbf{z}} - \frac{\partial \log \mathbf{n_i}}{\partial \mathbf{z}} \right]_{\mathbf{z_{H+}}} \Delta \mathbf{z_H} = \alpha_i \Delta \mathbf{z_H} \quad . \tag{34}$$ The subscript z_{H+} indicates that the derivatives in the bracket must be evaluated at a point immediately above the homopause (assumed to be a layer of zero thickness), in diffusive regime. From the models, we obtain $$a(Ar) = +3.07 \times 10^{-5} \text{ (mks)}$$, $a(O_2) = +1.03 \times 10^{-5} \text{ (mks)}$, $a(N_2) = 0$ $[a(O) = -4.03 \times 10^{-5} \text{ (mks)}]^*$, $a(He) = -6.30 \times 10^{-5} \text{ (mks)}$. *Use $-4.85 \times 10^{-5} \text{ (mks)}$. While the observed variations of Ar, N_2 , and He are consistent with these theoretical values of a, we find that for atomic oxygen we need a value of a close to -4.85×10^{-5} . This is not surprising, considering that at the height of the homopause, oxygen dissociation is still very active, so that O is very far from being in diffusion equilibrium. ## 4.3 The Equatorial Wave The equatorial wave can be represented by $$\Delta_{e} \log n_{i} = \Delta_{e} \log \rho = 5.2 \times 10^{-4} \text{ A } \cos^{4} \phi_{I}$$, (35) where ρ is the total density. By using A [equation (31b)] in equation (35), we automatically assume that the travel time of the equatorial wave is τ , the same as the propagation time for the temperature. Although there is no compelling reason to believe that this assumption is entirely correct, it would be very difficult to disentangle the two propagation times if they were different. All we can say is that at high latitudes, we observe a lag of about 0.1 in the density variations with respect to those in K_p , while in low latitudes, the lag amounts to about 0.3. The density variation of four atmospheric constituents as a function of the invariant latitude ϕ_{I} is shown in Figure 9, together with the corresponding variation of the exospheric temperature. ## 4.4 The Global Temperature Distribution Owing to its latitude dependence, the geomagnetic effect causes the maximum temperature to be shifted in the direction of the magnetic poles. Figure 10 shows the temperature distribution along the meridional circle crossing the geomagnetic poles at 17^h LST in one hemisphere and 5^h LST in the other, for four levels of geomagnetic activity. As can be seen, it takes only a very moderate degree of magnetic activity ($K_p \approx 2$) to shift the maximum temperature at the time of equinoxes from the equator to the polar regions. <u>Warning.</u> Mass-spectrometer data show that there is no appreciable smoothing in the variation of n_i when compared with the variation of K_p . In other words, the reaction time of the atmosphere is smaller than the 3-hour resolution of the K_p indices. If these models are compared with observations having a lower degree of resolution, such as some satellite-drag densities, it is essential to use in the equation a set of K_p 's smoothed to match the resolution of the data. Also, with a limited resolution such as in satellite drag, the temperature peak at the magnetic poles will appear flattened, with the result that the exponent m in equation (31a) and the numerical coefficient in equation (31b) will both become smaller; the effect will be a complicated function of the orbital inclination and of the density scale height at perigee, which must be evaluated before accurate comparisons can be made between drag-derived densities and those of the models. Another result of limited resolution is that the rotation of the earth under a satellite orbit tends to reduce or cancel the difference between magnetic and geographic coordinates. Whenever the smallest time interval in which drag is detectable is 1 day or more, geographic coordinates should be used. Figure 9. The density variation of four atmospheric constituents as a function of the invariant latitude ϕ_I , for various heights when the geomagnetic index $K_p = 5$. The curves were computed using a "quiet" ($K_p = 0$) exospheric temperature of 900 K. The diagram in the lower left corner depicts the variation of the total density; that in the lower right corner gives the corresponding variation in the exospheric temperature. Figure 10. Exospheric temperature profiles along the complete (360°) meridional circle along which the local solar time is 17^h in one hemisphere and 5^h in the other, for various levels of geomagnetic activity. Even a moderate level of activity ($K_p\approx 2$) has the effect of shifting the temperature maximum from the equator to the poles at the time of equinoxes. #### 5. SEASONAL-LATITUDINAL VARIATIONS When we deal with seasonal-latitudinal variations, we must first of all distinguish between the large variation of composition that is observed throughout the thermosphere and higher and the seasonal variation of temperature and density in the stratosphere and mesosphere, which spills over into the lower thermosphere and seems to vanish at heights above 140 to 150 km. To avoid confusion, we call the first the "thermospheric" and the second the "mesospheric" seasonal-latitudinal variation. ### 5.1 The Thermospheric Seasonal-Latitudinal Variation The observed thermospheric seasonal-latitudinal variation of density and composition is the result of two distinct contributions. The first comes from the seasonal-latitudinal component of the diurnal temperature variation, $c_1(\delta_{\bigcirc}/\epsilon)$ sin ϕ in equation (24). Its effect is to change the density and composition through a change in the scale height of the individual components; it is, therefore, strongly height dependent. When the contribution from this effect is subtracted, we are left with an intrinsic seasonal-latitudinal variation, essentially independent of height, whose origin must be traced to the lower boundary of the thermosphere. The so-called "winter helium bulge" is the first known example of this type of variation. This "intrinsic" part of the thermospheric seasonal-latitudinal variation can be represented by a formula similar to the sin term of equation (24). Let $\Delta_{\rm SL}$ $\log n_{\rm i}$ measure the departure of the number density of the species i from its yearly mean as a result of this variation. We can write $$\Delta_{\text{SL}} \log n_{\mathbf{i}} = c_{\mathbf{i}} \frac{\delta_{\bigcirc}}{\epsilon} \sin \phi . \tag{36}$$ Clearly, we cannot determine the c_i 's independently of c_1 , the corresponding coefficient in equation (24). This means that we must have a good model of the diurnal temperature variation, or at least of its seasonal-latitudinal component, before we can proceed to compute the c_i 's. Using the model of the diurnal variation described in Section 3, with $c_1 = 0.15$ as derived from the OGO 6 Doppler temperatures, we have determined values of c_i from the ESRO 4 data on four species (Jacchia, Slowey, and von Zahn, 1977b), as well as from the drag of six satellites (for O and He only); they are given in Table 7. Table 7. Parameters of the seasonal-latitudinal variation. | Species | ESRO 4 | Satellite drag | Adopted | |---------------------------|--------|----------------|---------| | $\overline{\mathrm{N}_2}$ | +0.06 | - . | 0 | | o | -0.15 | -0.18 | -0.16 | | He | -0.79 | -0.76 | -0.79 | | \mathbf{Ar} | 0.00 | _ · | 0 | | $o_{2}^{}$ | | - | [0?] | ## 5.2 The Mesospheric Seasonal-Latitudinal Variation As is well known, the temperature in the troposphere and stratosphere is warmer in summer and colder in winter; at a height of 66 km, however, the situation reverses, and at the mesopause, around 88 km, the variation reaches its greatest amplitude, with a minimum in summer and a maximum in winter. Proceeding to greater heights, the amplitude decreases and reaches zero at 100 km; above 100 km, it is again warmer in summer and colder in winter. The density, for obvious reasons, follows a phase-shifted pattern: it is higher in summer than in winter throughout the stratosphere and mesosphere, to a height of 91 km, where there is an isopycnic layer. At 100 to 120 km, the density is higher in winter than in summer, but there is a second reversal somewhere around 140 to 160 km, because at a height where the daily variation becomes observable, i.e., at 180 to 200 km, we again have the highest densities in summer. At these heights, the picture merges with the thermospheric variations.
There must be a transition layer, but it is difficult to establish with any degree of assurance what its height and thickness are. In a general theory that makes use of solar-energy absorption and reradiation variable with height (or, better, with density and composition), there should be no reason for distinguishing between mesospheric and thermospheric seasonal-latitudinal variations; in the absence of such a theory, however, the distinction becomes a practical necessity. Tables of monthly temperature, pressure, and density means at heights from 25 to 110 km for latitudes from 0° to 70° have been compiled by Groves for the COSPAR International Reference Atmosphere (CIRA, 1972). Trying to fit a simple and consistent analytical model to these data, even when only heights above 90 km are considered, appears to be a hopeless task. In the 1971 models, we fitted the densities only, leaving the temperatures alone and using our imagination for heights above 120 km. We repeat here the formula, with warnings of caution to the users: $$\Delta_{\text{s}\ell} \log \rho = \frac{\phi}{|\phi|} \text{SP sin}^2 \phi \quad , \tag{37}$$ where the maximum half-range $$S = 0.014 (z - 91) \exp [-0.0013 (z - 91)^{2}]$$, (z in km) (38a) and the phase $$P = \sin(2\pi\Phi + 1.72) \quad ; \tag{38b}$$ φ is the geographic latitude and Φ = (t - Jan. 1)/365. Values for S and P are tabulated in Table 8. We find that $\Delta_{s\ell}$ log ρ as expressed by equations (37) and (38) is roughly consistent with temperature deviations $\Delta_{s\ell} T$ from the basic models given by $$\Delta_{s\ell} T = -2.9P(z - 102.5) \exp(-7.8 \times 10^{-5} |z - 102.5|^{2.7}) . \tag{39}$$ Table 8. The "mesospheric" seasonal-latitudinal density variation according to equation (37): $\Delta_{\text{Sl}} \log \rho = (\phi/|\phi|)$ SP $\sin^2 \phi$. | a) Maxim | num half-range | S = 0 | .014 (z - | 91) e | xp[-0. | 0013 (z - | . 91) ²] | |----------|----------------|-------|-----------|-------|--------|-----------|----------------------| |----------|----------------|-------|-----------|-------|--------|-----------|----------------------| | z (km) | S. | z (km) | S | z (km) | S | |--------|-------|--------|-------|--------|-------| | 91 | 0.000 | 121 | 0.130 | 151 | 0.008 | | 96 | 0.068 | 126 | 0.100 | 156 | 0.004 | | 101 | 0.123 | 131 | 0.070 | 161 | 0.002 | | 106 | 0.157 | 136 | 0.045 | 166 | 0.001 | | 111 | 0.166 | 141 | 0.027 | 171 | 0.000 | | 116 . | 0.155 | 146 | 0.015 | | | b) Phase P = $\sin (2\pi \Phi + 1.72)^*$ | Day | 7 | P | Day | 7 | P | Day | 7 | P | Day | P | |------|----|-------------|------|----|----------------|-------|----|---------------|----------|--------| | Jan. | 1 | ±0.989 | Apr. | 1 | ∓0.129 | June | 30 | ∓0.994 | Sept. 28 | ±0.086 | | • | 11 | ±0.948 | | 11 | ∓0.297 | July | 10 | ∓0.961 | Oct. 8 | ±0.255 | | | 21 | ±0.880 | | 21 | ∓0.456 | | 20 | ∓0.900 | 18 | ±0.417 | | | 31 | ±0.786 | May | 1 | ∓0.602 | | 30 | ∓0.812 | 28 | ±0.567 | | Feb. | 10 | ±0.668 | | 11 | ∓0.73 0 | Aug. | 9 | ∓0.699 | Nov. 7 | ±0.699 | | | 20 | ±0.531 | | 21 | ∓0.836 | | 19 | ∓0.567 | 17 | ±0.812 | | Mar. | 2 | ± 0.378 | | 31 | ∓0.918 | | 29 | ∓0.417 | 27 | ±0.900 | | | 12 | ±0.214 | June | 10 | ∓0.972 | Sept. | 8 | ∓0.255 | Dec. 7 | ±0.961 | | | 22 | ± 0.043 | | 20 | ∓0.99 8 | | 18 | ∓0.086 | 17 | ±0.994 | | | | | | | | | | | 27 | ±0.998 | ^{*}Take the upper sign for the Northern Hemisphere, the lower for the Southern Hemisphere. #### 6. THE SEMIANNUAL VARIATION In the J65 models, the semiannual variation was represented by a temperature oscillation. We abandoned this model in J71 in favor of a density wave without a corresponding temperature variation and discussed the reasons for such a change (see also Jacchia, 1971b). Since then, several papers dealing with the semiannual variation have appeared. Wulf-Mathies (1972) found marginal evidence for a latitudinal dependence of the variation; Hedin et al. (1974) also found a weak latitudinal dependence, different for each atmospheric species; and according to Volland, Wulf-Mathies, and Priester (1972), the height dependence of the amplitude is almost entirely due to the semiannual component, the annual component being nearly independent of height. In all these papers, the analysis is limited to a relatively short time interval, from 1 to 3 years. As has been shown by King-Hele (1966), Jacchia, Slowey, and Campbell (1969), and Jacchia (1971b), the semiannual variation undergoes marked changes from year to year; this being the case, we still prefer to use the model of J71, which was derived from 12 years of satellite-drag data covering a wide range of heights. The pertinent equations are reported here with some minor modifications. We express the semiannual density variation in $\log \rho$ as the product of two functions — one of the height z, and the other of time t: $$\Delta_{sa} \log \rho = f(z) g(t) , \qquad (40)$$ with $$f(z) = \left[0.04 \left(\frac{z}{200}\right)^2 + 0.05\right] \exp\left(-0.25 \frac{z}{100}\right) , \quad (z \text{ in km})$$ (41) and $$g(t) = 0.0284 + 0.382 [1 + 0.467 \sin (2\pi\tau + 4.14)] \sin (4\pi\tau + 4.26) . \tag{42}$$ Here, τ is a periodic function of the fraction of the tropical year T corresponding to the time t $$\Phi = \frac{t - t_0}{T}$$, $(t_0 = Jan. 1.0)$, (43) $$\tau = \Phi + 0.0954 \left\{ \left[\frac{1}{2} + \frac{1}{2} \sin \left(2\pi \Phi + 6.04 \right) \right]^{1.65} - \frac{1}{2} \right\}$$ (44) The absolute term in g(t), 0.0284, has the purpose of making $\int g(t) dt = 0$ over one cycle of the variation. Values of f(z) and g(t) are tabulated in Table 9. Volland et al. (1972) decomposed the "semiannual variation" into an annual and a semiannual term, both strictly sinusoidal, and — as we mentioned — found that the amplitude of the annual term was nearly independent of height. They were able to reproduce the large observed difference in depth between the January and the July minima, but not the difference in height between the April and the October maxima, which they dismissed as probably not real, on the basis of a paper by Wulf-Mathies (1972). The difference, however, is real, although smaller than that between the minima, as can be seen from the independent analysis of all other investigators. If it is true that the amplitude of the annual component is nearly constant, there might be some advantage in using this feature. Accordingly, we offer here our alternate model constructed along the line of that by Volland et al.: $$\Delta_{sa} \log \rho = f_1(z) g_1(t) + f_2(z) g_2(t)$$ (45) The subscript 1 refers to the annual component, the subscript 2 to the semiannual, $$f_1(z) = 0.03 \tanh \left(0.6 \frac{z}{100}\right)$$, (46a) $$f_2(z) = \left[0.017 \left(\frac{z}{100}\right)^2 + 0.015\right] \exp\left(-0.25 \frac{z}{100}\right) ,$$ (46b) and $$g_1(t) = \cos [2\pi(\Phi - 0.047)]$$, (47a) $$g_2(t) = \cos \left[4\pi(\Phi - 0.296)\right]$$ (47b) Table 9. Tables for the computation of the semiannual density variation using equation (40): $\Delta_{sa} \log \rho = f(z) g(t)$. a) f(z) | z (km) | f(z) | z (km) | f(z) | z (km) | f(z) | |--------|-------|--------|-------|--------|-------| | 100 | 0.070 | 500 | 0.301 | 900 | 0.347 | | 150 | 0.096 | 550 | 0.319 | 950 | 0.340 | | 200 | 0.127 | 600 | 0.332 | 1000 | 0.332 | | 250 | 0.161 | 650 | 0.343 | 1050 | 0.323 | | 300 | 0.194 | 700 | 0.349 | 1100 | 0.313 | | 350 | 0.225 | 750 | 0.353 | 1150 | 0.301 | | 400 | 0.254 | 800 | 0.353 | 1200 | 0.289 | | 450 | 0.279 | 850 | 0.351 | | | b) g(t) | Φ | g(t) | Φ | g(t) | Φ | g(t) | Φ | g(t) | |------|--------|------|--------|------|--------|------|--------| | 0.00 | -0.145 | 0.26 | +0.361 | 0.52 | -0.478 | 0.78 | +0.415 | | 0.02 | -0.178 | 0.28 | +0.346 | 0.54 | -0.508 | 0.80 | +0.463 | | 0.04 | -0.188 | 0.30 | +0.307 | 0.56 | -0.522 | 0.82 | +0.478 | | 0.06 | -0.178 | 0.32 | +0.247 | 0.58 | -0.517 | 0.84 | +0.463 | | 0.08 | -0.150 | 0.34 | +0.173 | 0.60 | -0.490 | 0.86 | +0.418 | | 0.10 | -0.106 | 0.36 | +0.090 | 0.62 | -0.439 | 0.88 | +0.350 | | 0.12 | -0.049 | 0.38 | +0.003 | 0.64 | -0.364 | 0.90 | +0.265 | | 0.14 | +0.020 | 0.40 | -0.084 | 0.66 | -0.267 | 0.92 | +0.170 | | 0.16 | +0.097 | 0.42 | -0.167 | 0.68 | -0.150 | 0.94 | +0.074 | | 0.18 | +0.176 | 0.44 | -0.245 | 0.70 | -0.022 | 0.96 | -0.015 | | 0.20 | +0.249 | 0.46 | -0.317 | 0.72 | +0.108 | 0.98 | -0.090 | | 0.22 | +0.309 | 0.48 | -0.380 | 0.74 | +0.231 | 1.00 | -0.145 | | 0.24 | +0.348 | 0.50 | -0.434 | 0.76 | +0.336 | | | Here we have brought the amplitudes in line with our first model. As we said, this model does not reproduce the difference in the April and October maxima. A comparison between the semiannual variation computed with equations (40) to (44) and that computed with equations (45) to (47) is shown in Figure 11. Figure 11. The semiannual density variation at 200 and 500 km, according to equations (40) to (44) (solid line) and according to equations (45) to (47) (dashed line). It should be pointed out that if drag data from a single satellite are used to derive the semiannual variation, the annual component might get badly contaminated by the seasonal-latitudinal effect. It is only by using satellites in a variety of orbits and over long time intervals that the two effects can be clearly separated. #### 7. RAPID DENSITY FLUCTUATIONS Density gauges on the Explorer 32 satellite have detected the existence of waves throughout the upper atmosphere in the height range from 286 (satellite perigee) to at least 510 km (Newton, Pelz, and Volland, 1969). An analysis of these waves indicates that they propagate in the neutral atmosphere. The waves are most prevalent at the higher latitudes near the auroral zone (the orbital inclination of the satellite is 65°) and were observed most frequently in the late evening and early morning hours, but they were not limited to those latitudes and times.
The apparent vertical half-wave-lengths of the waves increase with altitude from 1 km at 286-km altitude to 70 km at 510-km altitude; their half-amplitudes in density range from the limit of detectability to a maximum of about 50% of the mean density. It appears that some of the observed wavelengths are integrally related, indicating the existence of "fundamental" wavelengths and of second, third, and fourth harmonics. Analyzing mass-spectrometer data from the Atmosphere Explorer C satellite in the 150- to 350-km region, Reber, Hedin, Pelz, Potter, and Brace (1975) found that the waves are accompanied by a change in composition: to an increase in nitrogen and argon density there corresponds a decrease in the helium density, just as in the geomagnetic phenomenon. These waves have been interpreted as free internal gravity waves propagating predominantly from north to south or from south to north, with maximum horizontal wavelengths between 130 and 520 km. The altitude dependence of the apparent vertical half-wavelengths results from the satellite moving with varying vertical velocity through a slowly propagating wave pattern with nearly vertical phase planes. It is tempting to visualize these waves as part of the mechanism by which energy deposited in the auroral zones is conveyed to lower latitudes. . ### 8. SUMMARY OF FORMULAE USED IN THE TEXT ## Solar activity $$T_{1/2} = 5.48 \overline{F}^{0.8} + 101.8 F^{0.4}$$ (20) F to be taken at time $t - \Delta t$, where $$\Delta t = 1.26 + 0.37 \sin (H - 92^{\circ})$$ (23) $$\overline{\mathbf{F}} = \frac{\sum \mathbf{w} \mathbf{F}}{\sum \mathbf{w}} \tag{21}$$ $$w = \exp \left[-\left(\frac{t - t_0}{\tau}\right)^2 \right] , \qquad (\tau = 71 \text{ days})$$ (22) ## Diurnal variation $$\frac{\Theta_{\mathbf{i}}}{T_{1/2}} = 1 + 0.15 \frac{\delta_{\odot}}{\epsilon} \sin \phi + 0.24 \cos \phi \left[\mathbf{f_i(H)} - \frac{1}{2} \right]$$ (27) $$f_i(H) = \cos^n \frac{1}{2} (H + \beta_i) + 0.08 \cos [3(H + \beta_i) - 75^\circ]$$ $$n = 2 + \cos^2\left(\frac{\phi^2}{90^\circ}\right)$$ $$\beta_{\mathbf{i}} = -35^{\circ} + 27^{\circ} \left(\frac{\overline{\mathbf{M}}}{\mathbf{M}_{\mathbf{i}}} - 1 \right) \tag{26}$$ (for actual temperature, $\beta_{\rm T}$ = -60°) # Geomagnetic activity $$\Delta_{G} \log n_{i} = \Delta_{T} \log n_{i} + \Delta_{H} \log n_{i} + \Delta_{e} \log n_{i}$$ (28) $$\Delta_{\mathbf{G}}^{\mathbf{T}_{\infty}} = \mathbf{A} \sin^4 \phi_{\mathbf{I}} \tag{31a}$$ A = 57.5 K'_p $$\left[1 + 0.027 \exp(0.4 \text{ K'}_p)\right]$$ (31b) $K'_p = K_p$ at time $t - \tau$, where $$\tau = 0.1 + 0.2 \cos^2 \phi_{\rm I} \tag{30}$$ $$\Delta_{G}T(z) = \Delta_{G}T_{\infty} \tanh [0.006(z - 90)]$$, (z in km) $$\Delta_{\mathbf{H}} \log n_{\mathbf{i}} = \alpha_{\mathbf{i}} \Delta z_{\mathbf{H}} \tag{34}$$ $$\Delta z_{H} = 5.0 \times 10^{3} \sinh^{-1} (0.010 \Delta_{G}^{T})$$, (meters) (33) $$\alpha(Ar) = +3.07 \times 10^{-5} , \qquad \alpha(O_2) = +1.03 \times 10^{-5} (?) , \qquad \alpha(N_2) = 0 ,$$ $$\alpha(O) = -4.85 \times 10^{-5} , \qquad \alpha(He) = -6.30 \times 10^{-5} \text{ (mks)}$$ $$\Delta_{\mathbf{e}} \log n_{\mathbf{i}} = 5.2 \times 10^{-4} \,\mathrm{A} \,\cos^4 \phi_{\mathbf{I}} \tag{35}$$ # Seasonal-latitudinal variations c(Ar) = 0 a) Thermospheric: $$\Delta_{\rm SL} \log n_{\bf i} = c_{\bf i} \frac{\delta_{\bigodot}}{\epsilon} \sin \phi \tag{36}$$ Values of $c_{\bf i}$: $c(N_2) = 0$, $c(O) = -0.16$, $c(He) = -0.79$, b) "Mesospheric": $$\Delta_{s\ell} \log \rho = \frac{\phi}{|\phi|} \operatorname{SP} \sin^2 \phi \tag{37}$$ $$S = 0.014 (z - 91) \exp \left[-0.0013 (z - 91)^2\right]$$, (z in km) (38a) $$P = \sin\left(2\pi \frac{t - t_0}{365} + 1.72\right)$$, (t in days, $t_0 = Jan. 1$) (38b) $$\Delta_{sf} T = -2.9 P(z - 102.5) \exp(-7.8 \times 10^{-5} |z - 102.5|^{2.7})$$ (39) ## Semiannual variation ## a) J71 model: $$\Delta_{sa} \log \rho = f(z) g(t) \tag{40}$$ $$f(z) = \left[0.04 \left(\frac{z}{100}\right)^2 + 0.05\right] \exp\left(-0.25 \frac{z}{100}\right) , \qquad (z \text{ in km})$$ (41) $$g(t) = 0.0284 + 0.382 [1 + 0.467 \sin(2\pi\tau + 4.14)] \sin(4\pi\tau + 4.26)$$ (42) $$\tau = \Phi + 0.0954 \left\{ \left[\frac{1}{2} + \frac{1}{2} \sin \left(2\pi \Phi + 6.04 \right) \right]^{1.65} - \frac{1}{2} \right\}$$ (44) $$\Phi = (t - Jan. 1)/365$$ (43) ### b) Alternate model: $$\Delta_{\text{sa}} \log \rho = f_1(z) g_1(t) + f_2(z) g_2(t)$$ (45) $$f_1(z) = 0.03 \tanh \left(0.6 \frac{z}{100} \right)$$ (46a) $$f_2(z) = \left[0.017 \left(\frac{z}{100}\right)^2 + 0.015\right] \exp\left(-0.25 \frac{z}{100}\right)$$ (46b) $$g_1(t) = \cos [2\pi (\Phi - 0.047)]$$ (47a) $$g_2(t) = \cos \left[4\pi \left(\Phi - 0.296\right)\right]$$ (47b) and the control of th #### 9. NUMERICAL EXAMPLE Suppose we want to find the temperature, density, and composition for a point with the following coordinates: Longitude = 45°W of Greenwich (= 315°E) , Latitude = 40°N , Height = 320 km , on May 4, 1974, at 14^h0^m UT (= MJD 42171.5833). For that instant, we find: Sun's declination, δ_{\bigodot} = +15.96 , $\delta_{\bigodot}/\epsilon$ = +0.6808 , Local solar time, LST = $11^{h}3^{m}.3$, Hour angle of the sun, H = -14.18 , Fraction of tropical year, Φ = 0.338 , Geomagnetic latitude, Φ ' = 50.47 . The 10.7-cm solar flux has to be evaluated at time $t-\Delta t$. With $\Delta t \approx 1$ day, we find $\overline{F}=87.6$, F=114; with these values, equation (20) gives $T_{1/2}=873.1$ K. Entering the models with this exospheric temperature and z=320 km, we find $\overline{M}=16.90$, for use in equation (26). From equations (24) to (27), we find the Θ_i 's appropriate for each constituent, with its corresponding number density: | Species | $\underline{\Theta}_{\mathbf{i}}$ | $\frac{\log (n_i)}{0}$ | |-------------|-----------------------------------|------------------------| | $^{ m N}_2$ | 952.6 | 13.670 | | $o_{2}^{}$ | 950.8 | 12.224 | | 0 | 963.9 | 14.587 | | Ar | 948.2 | 9.765 | | He | 996.8 | 12.719 | | H | 939.3^* | 11.265 | $⁼ T_0$, the "quiet" exospheric temperature. We can now proceed to evaluate the geomagnetic effect. Corresponding to $\varphi'=50.^\circ47,$ equation (30) gives the time lag $\tau=0.18$ day = 4.3 hours. For $t-\tau=1974$ May 4.40, we find $K_p'=5_0$, which, introduced in equations (31a) and (31b), gives A=345 K, $\Delta_G T_\infty=122$ K. We now must compute the three components of the total "geomagnetic" variation Δ_G log n_i [equation (28)]. The quantity Δ_T log n_i is the change in log n_i as the exospheric temperature increases from its "quiet" value $T_0(\infty)=939.3$ K to $T_0(\infty)+\Delta_G T_\infty=1061$ K. For simplicity, we shall ignore equation (32) and the integrations it involves; for lower heights, this would not be justified. For Δ_H log n_i , we must use equations (33) and (34); for Δ_e log n_i , equation (35). We find | Species | $\frac{\Delta_{\mathrm{T}} \log n}{1}$ | $\Delta_{\mathrm{H}} \frac{\log n}{1}$ | $\frac{\Delta}{e} \frac{\log n}{1}$ i | $\frac{\Delta}{G} \frac{\log n}{1}$ i | |------------|--|--|---------------------------------------|---------------------------------------| | ${ m N_2}$ | +0.267 | 0 | +0.063 | +0.330 | | o_2^{r} | +0.312 | +0.080 | +0.063 | +0.455 | | o | +0.131 | -0.374 | +0.063 | -0.180 | | Ar | +0.403 | +0.237 | +0.063 | +0.703 | | He | +0.014 | -0.487 | +0.063 | -0.410 | | H | -0.161 | ? | +0.063 | [-0.098] | The effect of the seasonal-latitudinal variation is computed from equation (36): | Species | $\frac{\Delta_{\text{SL}} \log n}{i}$ | |------------|---------------------------------------| | ${ t N}_2$ | . 0 | | o_2^- | 0(?) | | o | -0.070 | | Ar | 0 | | Не | -0.346 | | H | (?) | The mesospheric seasonal-latitudinal variation is negligible at 320 km. Finally, we can compute the effect of the semiannual variation from equations (40) to (44) or (45) to (47). Opting for the first set, we obtain $\Delta_{\rm Sa}$ log ρ = +0.037. Assembling all the various effects, we have | Species | $\frac{\log (n_i)}{0}$ | $\Delta_{\mathbf{G}} \frac{\log n_{\mathbf{i}}}{\mathbf{i}}$ | $\frac{\Delta_{\text{SL}} \log n}{1}$ | $\frac{\Delta}{\sin n}$ i | Final
log n | |-------------|------------------------|--|---------------------------------------|---------------------------|----------------| | $^{ m N}_2$ | 13.670 | +0.330 | 0 | +0.037 | 14.037 | | o_2^- | 12.224 | +0.455 | [0] | +0.037 | 12.716 | | 0 | 14.587 | -0.180 | -0.070 | +0.037 | 14.374 | | Ar | 9.765 | +0.703 | 0 | +0.037 | 10.505 | | He | 12.719 | -0.410 | -0.346 | +0.037 | 12.000 | | H | 11.265 | [-0.098] | - | +0.037 | [11.204] | The total density is given by $\rho = \sum M_i n_i / A$, where A is Avogadro's number, 6.02217 \times 10²⁶ (mks); we obtain $\rho = 1.164 \times 10^{-11}$, log $\rho = -10.934$. . • #### REFERENCES - BLUM, P. W., and HARRIS, I. - 1973. On empirical models of the upper atmosphere in the polar regions. Planet. Space Sci., vol. 21, pp. 377-381. - BRINTON, H. C., MAYR, H. G., and POTTER, W. E. - 1975. Winter bulge and diurnal variations in hydrogen inferred from AE-C composition measurements. Geophys. Res. Lett., vol. 2, pp. 389-392. - CARRU, H., and WALDTEUFEL, P. - 1969. Étude par diffusion de Thomson des variations de la température exosphérique. Ann. de Géophys., vol. 25, pp. 485-494. #### CIRA - 1972. COSPAR International Reference Atmosphere 1972. Compiled by COSPAR Working Group IV, Akademie-Verlag, Berlin, 450 pp. - COESA, Committee on Extension of the Standard Atmosphere - 1962. <u>U.S. Standard Atmosphere 1962.</u> U.S. Government Printing Office, Washington, D.C., 278 pp. - 1976. <u>U.S. Standard Atmosphere</u>, 1976. U.S. Government Printing Office, Washington, D.C., 227 pp. - COOK, G. E. - 1965. Satellite drag coefficients. Planet. Space Sci., vol. 13, pp. 929-946. HACHENBERG, O. - 1965. Radio
frequency emissions of the sun in the centimeter wavelength range: The slowly varying sunspot component. In Solar System Radio Astronomy, ed. by J. Aarons, Plenum Press, New York, pp. 95-108. - HARRISON, L. P. - 1951. Relation between geopotential and geometric height. In Smithsonian Meteorological Tables, 6th ed., U.S. Government Printing Office, Washington, D.C., pp. 217-219. - HEDIN, A. E., MAYR, H. G., REBER, C. A., SPENCER, N. W., and CARIGNAN, G. R. 1974. Empirical model of global thermospheric temperature and composition based on data from the OGO 6 quadrupole mass spectrometer. Journ. - JACCHIA, L. G. - 1965. Static diffusion models of the upper atmosphere with empirical temperature profiles. Smithsonian Contr. Astrophys., vol. 8, pp. 215-257. - 1970. New static models of the thermosphere and exosphere with empirical temperature profiles. Smithsonian Astrophys. Obs. Spec. Rep. No. 313, 87 pp. - 1971a. Revised static models of the thermosphere and exosphere with empirical temperature profiles. Smithsonian Astrophys. Obs. Spec. Rep. No. 332, 113 pp. - 1971b. The semiannual density variation in the heterosphere: A reappraisal. Presented at the 14th International COSPAR Meeting, Seattle, Washington, June. - 1973. Comments on the paper "On empirical models of the upper atmosphere in the polar regions." Planet. Space Sci., vol. 21, pp. 883-884. - 1974. Variations in thermospheric composition: A model based on mass spectrometer and satellite drag data. Journ. Geophys. Res., vol. 79, pp. 1923-1927. - JACCHIA, L. G., CAMPBELL, I. G., and SLOWEY, J. W. - 1973. A study of the diurnal variation in the thermosphere as derived by satellite drag. Planet. Space Sci., vol. 21, pp. 1825-1834. - JACCHIA, L. G., and SLOWEY, J. W. - 1973. A study of the variations in the thermosphere related to solar activity. In <u>Space Research XIII</u>, ed. by M. J. Rycroft and S. K. Runcorn, Akademie-Verlag, Berlin, pp. 343-348. - JACCHIA, L. G., SLOWEY, J. W., and CAMPBELL, I. G. - 1969. A study of the semi-annual density variation in the upper atmosphere from 1958 to 1966, based on satellite drag analysis. Planet. Space Sci., vol. 17, pp. 49-60. - 1973. An analysis of the solar activity effects in the upper atmosphere. Planet. Space Sci., vol. 21, pp. 1835-1842. - JACCHIA, L. G., SLOWEY, J. W., and VON ZAHN, U. - 1976. Latitudinal changes of composition in the disturbed thermosphere from ESRO 4 measurements. Journ. Geophys. Res., vol. 81, pp. 36-42. - JACCHIA, L. G., SLOWEY, J. W., and VON ZAHN, U. - 1977a. Temperature, density, and composition in the disturbed thermosphere from ESRO 4 gas-analyzer measurements: A global model. Journ. Geophys. Res., vol. 82, pp. 684-688. - 1977b. Seasonal-latitudinal variations of composition from ESRO 4 gas analyzer measurements and satellite drag. In preparation. - KING-HELE, D. G. - 1966. Semi-annual variation in upper-atmosphere density. Nature, vol. 210, p. 1032. - MAUERSBERGER, K., ENGEBRETSON, M. J., KAYSER, D. C., and POTTER, W. E. 1976. Diurnal variation of atomic nitrogen. Journ. Geophys. Res., vol. 81, pp. 2413-2416. - MAYR, H. G., HEDIN, A. E., REBER, C. A., and CARIGNAN, G. R. - 1974. Global characteristic in the diurnal variations of thermospheric temperature and composition. Journ. Geophys. Res., vol. 79, pp. 619-628. - McCLURE, J. P. - 1969. Diurnal variation of neutral and charged particle temperatures in the equatorial F region. Journ. Geophys. Res., vol. 74, pp. 279-291. - 1971. Thermospheric temperature variations inferred from incoherent scatter observations. Journ. Geophys. Res., vol. 76, pp. 3106-3115. - McILWAIN, C. E. - 1966. Magnetic coordinates. In <u>Radiation Trapped in the Earth's Magnetic Field</u>, ed. by B. M. McCormac, D. Reidel Publ. Co., Dordrecht, Holland, pp. 45-61. - MINZNER, R. A., and RIPLEY, W. S. - 1956. The ARDC Model Atmosphere, 1956. AFCRC TN-56-204; ASTIA Document 110233, 202 pp. - NEWTON, G. P., KASPRZAK, W. T., CURTIS, S. A., and PELZ, D. T. - 1975. Local time variation of equatorial thermospheric composition determined by the San Marco 3 Nace. Journ. Geophys. Res., vol. 80, pp. 2289-2299. - NEWTON, G. P., PELZ, D. T., and VOLLAND, H. - 1969. Direct in situ measurements of wave propagation in the neutral thermosphere. Journ. Geophys. Res., vol. 74, pp. 183-196. - PAUL, G., VOLLAND, H., and ROEMER, M. - 1974. A study of the time lag between the 27-day variations of thermospheric density and 10.7 cm solar radiation. In <u>Space Research XIV</u>, ed. by M. J. Rycroft and R. D. Reasenberg, Akademie-Verlag, Berlin, pp. 189-193. - PHILBRICK, C. R., McISAAC, J. P., and FAUCHER, G. A. - 1976. Variations in the atmospheric composition and density during a magnetic storm. Presented at the 19th Plenary Meeting of COSPAR, Philadelphia, June. - REBER, C. A., HEDIN, A. E., PELZ, D. T., POTTER, W. E., and BRACE, L. H. 1975. Phase and amplitude relationship of wave structure observed in the lower thermosphere. Journ. Geophys. Res., vol. 80, pp. 4576-4580. - SALAH, J. E., and EVANS, J. V. - 1973. Measurements of thermospheric temperatures by incoherent scatter radar. In <u>Space Research XIII</u>, ed. by M. J. Rycroft and S. K. Runcorn, Akademie-Verlag, Berlin, pp. 267-286. - TAEUSCH, D. R., and CARIGNAN, G. R. - 1972. Neutral composition in the thermosphere. Journ. Geophys. Res., vol. 77, pp. 4870-4876. - THUILLIER, G., FALIN, J. L., and WACHTEL, C. - 1976. Experimental global model of the exospheric temperature based on measurements from the Fabry-Perot interferometer on board the OGO-6 satellite. Presented at the 19th Plenary Meeting of COSPAR, Philadelphia, June. - VOLLAND, H., WULF-MATHIES, C., and PRIESTER, W. - 1972. On the semiannual variations of the thermospheric density. Journ. Atmos. Terr. Phys., vol. 34, pp. 1053-1063. - WULF-MATHIES, C. - 1972. The latitudinal dependence of the semi-annual effect. In Space Research XII, ed. by S. A. Bowhill, L. D. Jaffe, and M. J. Rycroft, Akademie-Verlag, Berlin, pp. 815-819. EXOSPHERIC TEMPERATURE = 500 K | LOG(DEN
KG/M3) | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 100.683 | 222.032 | 112,699
112,895
112,967
113,095 | |----------------------------|--|---|---|---|--| | DENSITY
KG/M3 |
3,43E-06
2,40E-06
1,68E-06
1,17E-06
8,16E-07
4,01E-07
2,82E-07
1,99E-07 | 9,946-08
4,426-08
2,176-08
1,166-08
6,696-09
2,686-09
1,276-09
9,046-10 | 6.58E-10
2.03E-10
2.05E-10
1.25E-10
7.73E-11
7.88F-11
2.08E-11
1.39E-11 | | 2.005=13
1.465=13
1.085=13
8.035=14
6.055=14 | | DENSITY
SCALE HT
KM | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 5.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00 | 114.11
114.55
118.00
218.00
218.00
228.36
228.36
25.31
25.31
25.31 | 0000488700 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | MEAN
MOL WT | 28 99 10 10 10 10 10 10 10 10 10 10 10 10 10 | 24
25
26
26
26
27
27
27
27
27
27
27
27
27
27
27
27
27 | 201
190
190
190
100
100
100
100
100
100
1 | မရာနက္ကိုလ္လုပ္ေတြကိုလာတဲ့ လ | 11.23
10.32
9.37
8.42
7.50 | | LOG
(PRFSSURE
NT/M2) | 8 9 7 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 20178
20178
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179
20179 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 15.005
15.005
15.005
15.005
15.005
15.005
15.005
15.005
15.005 | -7.132
-7.231
-7.322
-7.403 | | LOG (N | 19.854
19.545
19.545
19.391
19.084
18.933
18.483
18.483 | 18,342
18,002
17,703
17,703
17,210
17,009
16,832
16,832
16,525 | 16,260
16,021
15,801
15,594
15,400
15,036
14,864
14,864
14,864 | 444
444
888
889
884
884
884
884 | 13.031
12.931
12.841
12.759 | | LOG (N (H)
/M3) | | 12.646
12.595 | 12.553
12.443
12.443
12.409
12.336
12.337
12.337
12.337 | | 12.180
12.171
12.161
12.152
12.143 | | LOG (N (HE)
/M3) | 14,573
14,619
14,264
14,109
19,955
13,955
13,777
13,752
13,752 | 13.666
13.666
13.659
13.659
13.659
13.398
13.398
13.273
13.273 | 13.186
13.136
13.089
13.065
13.002
12.918
12.878
12.838
12.838 | | 12.380
12.343
12.306
12.270
12.233 | | LOG (N (A)
/M3) | 17.0824
17.0824
17.0826
17.0860
17.086
17.086
16.0852
16.0820
16.420 | 16.009
15.009
16.009
17.001
17.001
18.009
18.009
18.009
18.009
18.009
18.009
18.009
18.009
18.009
18.009
18.009 | 12.833
11.9867
11.9567
11.9552
110.444
10.344
9.950
9.559 | 8.74888.448888.448888.448888.448888.448888.448888.448888.448888.448888.448888.448888.448888.448888.448888.448888.448888.448888.4488888.4488888.44888888 | | | (N) (O) (N) (O) | 17.390
17.547
17.646
17.687
17.668
17.668
17.606
17.500
17.500 | 17.383
17.383
17.303
16.834
16.641
16.671
16.788
16.180 | 15.984
15.8627
15.627
15.292
15.129
14.809
14.851 | 23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 12.832
12.684
12.538
12.391
12.245 | | LOG(N(02) | 19.0170
19.009
18.843
18.674
18.501
18.326
18.132
17.978
17.613 | 17.425
16.974
16.599
15.279
15.997
15.516
15.306
15.107 | 14.734
14.380
14.039
13.705
13.378
13.055
12.735
12.419
12.106 | 11. 485
11. 178
11. 178
10. 568
10. 568
9. 664
9. 664
9. 067
8. 770 | 8.474
8.180
7.886
7.594
7.302 | | LOG(N(N2) | 19, 546
19, 5946
19, 5943
19, 128
118, 8944
118, 6744
118, 524 | 18,226
17,873
17,857
17,025
16,595
16,598
16,232
16,232 | 15.902
15.592
15.592
14.9999
14.112
11.6129
13.6129
13.6129
13.598 | 0 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 | 10,418
10,160
9,903
9,647
9,391 | | TEMP LC | 188.0
188.1
188.3
188.8
189.7
191.2
193.6
197.2
202.4
202.4 | 218.5
247.7
280.3
314.0
347.3
347.3
347.3
416.8
430.2
440.5 | 4448.6
4668.8
474.8
474.3
482.9
487.9
489.7 | 0 W 4 W W W 4 V V V | 497.8
498.1
498.2
498.4 | | F IGHT
KM | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1110
125
125
125
125
146
156
156 | 160
170
180
200
210
220
230
240 | 2250
2250
2250
220
250
250 | 340
370
380
390
400 | EXOSPHERIC TEMPERATURE = 500 K | LOG (DEN
KG/M3) | | 114,0599
114,0599
114,0599
114,0599
114,0599
114,0599
114,0599 | 44444444444444444444444444444444444444 | 11155.222
11155.222
11155.3266
11155.3266
11155.3266
11155.3266 | 11111111111111111111111111111111111111 | |----------------------------
---|---|---|--|--| | DENSITY
KG/M3 | 80411864448
808100088
80810008
80810018
808110118
818118
818118
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81818
81 | 22.20.40.40.40.40.40.40.40.40.40.40.40.40.40 |
11.2347
11.2347
11.2347
11.2347
11.2347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.4347
13.434 | 25.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2.35E-16
2.35E-16
2.05E-16
1.75E-16
1.52E-16
1.16E-16
1.00E-17 | | DENSITY
SCALE HT
KM | 0 4 4 8 9 8 6 8 4 6 9 6 9 6 9 6 9 9 9 9 9 9 9 9 9 9 9 9 | 179.61
190.37
2200.55
2200.49
230.67
241.17
252.02
263.26
24.89 | 286.83
3311.63
337.40
337.33
353.33
353.33
402.33
402.33 | 433.10
462.23
489.13
513.56
555.72
573.67
569.87
604.75 | 642.97
665.04
685.30
723.59
741.95
778.85
778.85
815.85 | | MEAN MOL WT | 0.000000000000000000000000000000000000 | | 6.000000000000000000000000000000000000 | 0.000000000000000000000000000000000000 | 000000000 | | LOG
(PRFSSURE
NT/M2) | 177.6590
177.6590
177.6823
177.9918
178.9958
178.9958
178.9958 | # 8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 18 951
19 95 142
19 95 142
19 95 142
19 95 319
19 95 316 | | LOG(N | 12.566
12.566
12.338
12.338
12.288
12.263
12.164
12.132 | 12.0069
12.0069
12.0012
11.9985
11.9935
11.9935
11.8865
11.865 | 11.823
11.802
11.782
11.763
11.725
11.725
11.689 | 11.612
11.6512
11.6532
11.6493
11.6419
11.383
11.312 | 11.210
11.145
11.081
10.959
10.960
10.785
10.730 | | L0G(N(H)
/M3) | 12-124
12-124
12-088
12-070
12-052
12-034
12-016
11-999
11-981 | 111.947
111.9947
111.9912
111.896
111.8862
111.8865
111.8829
111.812 | 11.780
11.764
11.747
11.731
11.6684
11.6684
11.6684 | 11.599
11.554
11.524
11.487
11.415
11.310
11.310 | 111.210
111.144
11.081
10.958
10.859
10.842
10.730 | | LOG (N (HE)
/M3) | 12.160
12.018
12.017
11.945
11.874
11.874
11.664
11.595 | 11.9458
111.3323
111.255
111.0555
110.056
10.995
10.925 | 10.796
10.7396
10.668
10.668
10.541
10.3418
10.395
10.295 | 10.079
9.079
9.781
9.634
9.849
9.348
9.069
8.932 | 6.848
6.848
6.848
6.848
6.848 | | LOG (N (A)
/M3) | | | | | | | LOG(N(O) | 11.0655
111.0667
111.095
110.0812
10.531
10.251
9.697
9.697 | 9.149
8.8149
8.607
8.339
9.072
7.5806
7.280
6.760 | 6.502
6.245 | | | | LOG (N (02)
/M3) | 6.145
6.145 | | | | | | TEMP 1 0G (N (N2) | 8 8 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 |) . | | | | | TEMP . | 44444444
00000000000000000000000000000 | 44444444
00000000000000000000000000000 | 444444444
0000000000000000000000000000 | 00000000000000000000000000000000000000 | | | HE I GHT
KM | 4444 W W W W W W W W W W W W W W W W W | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 | 11050
11100
11200
1250
13300
1450
1500 | 1600
1700
1800
1800
2100
2200
2300
2400
2500 | EXOSPHERIC TEMPERATURE = 550 K | LOG (DEN
KG/M3) | 111111111
0000000000000000000000000000 | 7.1.1.1.1.1.1.0.0.0.0.0.0.0.0.0.0.0.0.0. | 0.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | -111-028
-111-179
-111-6727
-111-6715
-112-0803
-12-165 | -12,428
-12,557
-12,684
-12,808 | |----------------------------|--|---|---|--|---| | DENSITY
KG/M3 | 3.43E-06
1.68E-06
1.17E-06
8.16E-07
4.01E-07
2.82E-07
1.98E-07 | 40.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7.40E-10
2.22E-10
2.55E-10
1.54E-10
6.34E-11
4.26E-11
4.26E-11
2.88E-11
1.99E-11 | 9.37E-12
6.62E-12
7.37E-12
2.37E-12
2.43E-12
1.28E-12
9.34E-13
6.85E-13
5.04E-13 |
3,73E-13
2,77E-13
2,07E-13
1,55E-13 | | DENSITY
SCALE HT
KM | WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW | 5.08
112.92
13.96
15.06
15.06
16.08 | 1186
221-95
221-95
221-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255-95
255- | 288
299
209
209
200
200
200
200
200
200
200 | 88888
8888
9888
9888
9888
9888
9888
98 | | MEAN MEAN | 28.91
28.91
28.85
28.65
28.55
28.55
28.21
27.79
27.79 | 22 23 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 22.07
21.20
20.39
19.65
19.60
17.93
17.93
17.51
16.83 | 16.55
16.30
16.30
16.05
15.81
15.81
14.98
14.63
13.75 | 13.20
12.59
11.90
11.90
11.95 | | LOG
(PRESSURE
NT/M2) | 1 1 2 3 4 5 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 | 12.0173
12.052
12.052
13.016
13.016
13.016
13.017
13.017
13.053
13.053 | 11.3 869
14.4 869
14.4 869
14.6 861
14.8 861
15.2 985
15.2 985
15.2 985 | .5.595
.5.738
.5.738
.6.016
.6.151
.6.5183
.6.506 | -6.891
-5.999
-7.101
-7.197 | | LDG (N
/F/3) | 199.854
199.7450
199.391
199.391
199.083
189.782
188.782 | 18.341
17.405
17.448
17.222
17.6569
16.699
16.599 | 166.306
115.8079
115.870
115.870
115.870
115.870
116.830
114.833
114.833 | 14,533
14,247
14,247
14,109
13,640
13,585
13,462
13,344 | 13.231
13.123
13.020
12.924
12.835 | | LOG (N (H) | | 12,507 | 12.410
12.342
12.254
12.256
12.251
12.178
12.178
12.146
12.146 | 12.121
12.110
12.099
12.089
12.080
12.061
12.061
12.052
12.053 | 12.025
12.016
12.008
11.999
11.991 | | LOG (N (HE)
/M3) | 14.573
14.619
14.264
14.264
13.954
13.954
13.776
13.723
13.723 | 13.5663
13.585
13.585
13.4512
13.342
13.255
13.255
13.255
13.205 | 13.179
13.131
13.087
13.006
13.006
12.906
12.891
12.855
12.855 | 12.782
12.747
12.747
12.676
12.667
12.607
12.538
12.538
12.538 | 12,437
12,403
12,369
12,336
12,336 | | LOG (N(A)
/M3) | 17.6824
17.6824
17.8515
17.205
17.205
16.865
16.629
16.619 | 16.010
15.0010
15.0010
16.0010
16.0010
16.0010
16.0010
16.0010
16.0010
16.0010 | 12.0940
12.0532
11.00532
11.00532
11.00549
10.0649
10.088
9.931 | 9.225
8.8275
8.81827
7.88837
7.8833
6.816
6.816
6.139 | | | LOG (N (D) | 17.340
17.547
17.646
17.687
17.689
17.668
17.668
17.698
17.498 | 17.380
17.199
17.809
16.831
16.671
16.296
16.296
16.194 | 1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.0000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.0000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.0000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.0000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.0000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.000
1155.00 | 14.492
14.351
14.351
14.073
13.934
13.560
13.524
13.388 | 13,118
12,984
12,850
12,717
12,585 | | LOG (N (02)
/M3) | 19.170
19.009
18.843
18.673
18.500
18.326
18.132
17.977 | 17.424
16.975
16.993
16.293
16.018
15.774
15.555
15.354
15.166 | 14.815
14.686
114.169
113.862
113.560
112.972
112.682
112.9662 | 11.0830
11.5549
11.271
10.994
10.718
10.170
9.898
9.627 | 9 088
8 820
8 553
8 287
8 021 | | EMP LOG(N(N2)
K /N3) | 19.746
19.592
19.6434
19.128
18.824
18.824
18.573
18.522 | 18.224
17.284
17.284
17.284
17.284
16.625
16.446
16.280
16.280 | 15.940
115.680
116.8680
114.8608
114.8608
114.8608
113.864
113.864 | 13.351
13.105
12.6861
12.618
12.377
12.1377
11.659
11.422 | 10.950
10.715
10.481
10.248
10.016 | | TEMP L | 188.1
188.1
188.1
188.3
188.9
191.6
194.2
196.2
204.0
211.8 | 2221
2521
2521
2521
2521
2521
2521
2521 |
484.0
499.5
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6
500.6 | 00000000000000000000000000000000000000 | 547.2
547.5
547.7
548.0
548.1 | | HE1GHT
KM | 1002
1002
1002
1004
1004 | 1110
1120
1130
1130
1140
1150
1150 | 160
170
180
180
200
220
230
240
250 | 260
270
280
280
380
380
380
390
390
390 | 360
380
400
400 | EXOSPHERIC TEMPERATURE = 550 K | L06 (DEN
KG/M3) | 11111111111111111111111111111111111111 | 11111111111111111111111111111111111111 | 444440000 | 11111111111111111111111111111111111111 | |-----------------------------|--|--|--|--| | DENSITY
KG/M3 | 44444999999999999999999999999999999999 | 22.22.28.38.38.38.38.38.38.38.38.38.38.38.38.38 | | 2.38E.16
2.06F.16
1.57E.16
1.38E.16
1.08E.16
1.08E.16
1.08E.17
7.61E.17 | | DENSITY
SCALE HT
KM | 98
472.03
472.03
473.03
484.05
91.24.18
1124.52
1124.52
1124.52
1124.53
1124.53
1124.53 | 153.88
1177.05
1177.05
1186.75
2212.00
2212.01
2229.59 | | 676.08
708.87
753.45
787.45
787.49
810.09
832.10
875.61
895.74 | | MEAN MOL MT | 22222222222222222222222222222222222222 | 2.22
2.12
2.12
2.03
1.09
1.09
1.069
1.069 | | 001111111111111111111111111111111111111 | | LOG
(PRF SSURE
NT/M2) |
11.17.05.43.3.17.05.43.3.17.05.43.3.17.05.43.3.17.05.43.3.18.09.40.00.25.17 | ### ### ############################## | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | L0G(N
/M3) | 12.678
12.443
12.443
12.789
12.731
12.136
12.095 | 112.022
111.9988
111.9988
111.8997
111.8869
111.8143
111.792 | 11.745
11.745
11.772
11.681
11.661
11.664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6664
11.6 | 11.145
11.085
11.026
10.970
10.914
10.861
10.757
10.757 | | LOG (N (H) | 111.9974
111.9974
111.9940
111.9926
111.8991
111.8859
111.8859 | 11.812
11.797
11.781
11.786
11.786
11.785
11.705
11.690 | 0404000000 | 11.142
11.083
11.083
10.969
10.860
10.808
10.757
10.757 | | LOG(N(HE)
/M3) | 12.237
12.171
12.106
12.041
11.976
11.8912
11.785
11.723 | 111.598
111.598
111.6475
111.359
111.239
111.173 | | 8.938
8.703
8.703
8.250
8.032
7.819
7.200
7.200 | | LDG (N (A) | | | | | | LOG(N(D) | 12.321
12.321
11.7058
11.539
11.0281
10.771
10.267 | 99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00
99.00 | 7 | | | LOG (N (02)
/M3) | 7.493
6.969
6.448 | | | | | LOG (N (N2) | 98897
9887
9887
9883
9483
9464
9464 | | | | | TEMP L | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 00000000000000000000000000000000000000 | | | | HE I GHT
KM | 4444 W W W W W W W W W W W W W W W W W | 620
640
660
660
720
740
740
760 | 8820
8860
8860
9880
9920
9920
1000
1000
11150
11150
11150
11150
11150
11150
11150 | 1600
1700
1800
2000
2200
2400
2400
2500 | EXOSPHERIC TEMPERATURE = 600 K | L0G(DEN
KG/M3) | 5.465
-5.620
-5.776 | 1 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - | 17.005
17.356
17.658
17.658
18.920
18.357
18.527 | -8.829
-8.963
-9.089 | 199327
199327
100104
11004
11005
11005
11005
11005
11005
11005
11005
11005
11005
11005
11005
11005
11005
11005
11005
11005
11005
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
1105
11 |
-10.890
-11.032
-11.307
-11.307
-11.700
-11.953 | -12,200
-12,321
-12,441
-12,558 | |-----------------------------------|--|--|--|--|--|--|--| | DENSITY
KG/M3 | 3,43E-06
2,40E-06
1,68E-06
1,17E-06 | 5.70E-07
4.00E-07
2.81E-07
1.98E-07 | 9.886-06
4.416-08
2.206-06
1.206-09
7.086-09
4.466-09
2.976-09 | 1,48E-09
1,09E-09
8,15E-10 | 2.916-10
1.836-10
1.196-10
7.876-11
5.956-11
2.556-11 | 1.296-11
9.286-12
6.746-12
3.686-12
1.696-12
1.996-12
1.496-12
1.116-12 | 6.31E-13
4.77E-13
3.63E-13
2.76E-13
2.12E-13 | | DENSITY
SCALE HT
KM | จเกเก | WWWWWW
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 9 | 200
200
200
200
200
200
200
200
200
200 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 35.64
36.10
36.59
37.14 | | MEAN
MOL WT | യയയയ | 28.52
28.36
28.21
28.02
27.79 | 24.00
24.00
24.00
24.00
24.00
24.00
24.00
25.00 | 5 2 | 21.51
20.75
20.04
19.40
18.82
18.32
17.49 | 16.87
16.84
16.38
16.38
16.16
15.95
15.73
15.73
15.25
14.98 | 14.31
13.90
13.44
12.92
12.35 | | LOG
(PRESSURE
NT/M2) | ~ ∞ ∽ ⊸ | 11.1.4.4.5.1.0.4.4.5.1.0.4.5.0.1.5.0.1.5.0.1.5.0.4.5.0.4.5.0.1.5.0.4.5.0.0.4.5.0.4.5.0.4.5.0.4.5.0.4.5.0.4.5.0.4.5.0.4.5.0.4.5.0.4.5.0.4.0 | 12.445
12.676
12.676
13.0676
13.200
13.200 | 13.5583
13.6583
13.65963
13.65963 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5. | 16.660
-6.769
-6.873
-6.974 | | L06 (N | | 19,236
19,083
18,932
18,781
18,632 | | 16.586
16.460
16.342 | 15.926
15.926
15.941
15.967
15.967
15.243
15.091
14.944 | 14.662
14.527
14.394
14.137
14.137
14.012
13.769
13.769
13.536 | 13.424
13.316
13.711
13.110
13.014 | | LOG (N(H) | | | | 12,387
12,332
12,286 | 12.020
12.038
12.038
12.038
12.020
12.020
11.092 | 11.9980
11.9969
11.9958
11.9948
11.9939
11.9921
11.904 | 11.887
11.879
11.871
11.863 | | LUG (N(A) LOG (N(HE)
/N3) /M3) | | 13,954
13,800
13,776
13,749
13,721 | • • • • • • • • | 7 | 13.126
13.084
13.007
13.007
12.971
12.900
12.866 | 12.799
12.767
12.734
12.670
12.670
12.606
12.575
12.575 | 12,481
12,450
12,420
12,389
12,358 | | LUG (N
(A)
/N3) | 17.824
17.670
17.515
17.360 | 17.205
17.051
16.839
16.628
16.419 | 16.010
15.123
14.759
14.6538
14.659
13.895 | 13,439
13,230
13,029 | 12.646
12.279
11.923
11.576
11.6234
10.869
10.236
9.910 | 9.5866
8.9566
7.9966
7.9966
7.9986
7.983 | 6.443
6.136 | | LOG (N (0)
/H3) | 17.390
17.547
17.646
17.687 | 17.689
17.667
17.667
17.549
17.496 | 17.377
17.195
17.005
16.829
16.533
16.513 | 16,205
16,113
16,026 | 15.464
15.464
15.464
15.461
15.282
15.145
15.010
14.877 | 14.615
14.485
14.357
14.229
13.8975
13.600
13.600 | 13,352
13,229
13,107
12,984
12,863 | | L06 (N (02)
/M3) | დდიდ | 18,500
18,326
18,152
17,976
17,796 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | NN 4 | 14, 571
13, 709
13, 734
13, 64
12, 697
12, 633 | 12.
11. 854
11. 5598
11. 090
10. 583
10. 088
9. 840 | 9.593
9.347
9.102
8.858
8.615 | | TEMP LOG(N(R2)
k /M3) | 9.74
9.59
9.43
9.28 | 19,127
18,973
18,823
18,672
18,521 | 6667778
66859677
66859677 | 6.31
6.16
6.02 | 15,751
15,751
14,993
14,753
14,753
14,2816
14,050 | 13.593
13.367
13.143
12.920
12.698
12.477
12.257
12.038 | 11.387
11.172
10.958
10.744
10.531 | | TEMP L | 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 190.1
191.9
194.8
199.2
205.4
213.9 | 22
20
40
40
41
71 | 90. | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5847
5897
5908
5908
5992
5993
595
595
1 | 596.5
596.9
597.2
597.4 | | HF 1641
KM | 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 102
102
104
106 | | 150
155
160 | 170
180
190
200
210
220
230
240 | 260
270
280
280
310
320
340
350 | 360
370
380
390
400 | | HE I GHT
KM | TEMP
K | LOG (N (N2)
/M3) | LOG(N(O2)
/M3) | LOG(N(O)
/M3) | LOG(N(A)
/M3) | LOG (N (HE)
/M3) | LOG(N(H)
/M3) | LOG (N
/M3) | LOG
(PRESSURE
NT/M2) | MEAN
MOL WT | DENSITY
SCALE HT
KM | DENSITY
KG/M3 | LOG(DEN
KG/M3) | |----------------|-----------|---------------------|-------------------|------------------|------------------|---------------------|------------------|----------------|----------------------------|----------------|---------------------------|------------------|-------------------| | 420 | 598.1 | 10.107 | 8.131 | 12,620 | | 12.298 | 11.840 | 12.836 | -7.247 | 11.04 | 39.26 | 1.26E-13 | -12.900 | | 440 | 598.4 | 9.686 | 7.650 | 12,380 | | 12.237 | 11.825 | 12.681 | -7.402 | 9.61 | 41.34 | 7.65E-14 | -13,116 | | 460 | 598.6 | | 7,172 | 12,141 | | 12.178 | 11.809 | 12.548 | -7.534 | 8.16 | 44.25 | 4.79E-14 | -13.320 | | 480 | 598.8 | | 6.697 | 11,903 | | 12.118 | 11.794 | 12.437 | -7.646 | 6.84 | 48.34 | 3.11E-14 | -13.508 | | 500 | 599.0 | | 6,225 | 11,667 | | 12.059 | 11.779 | 12.345 | -7.738 | 5.71 | 54.01 | 2.10E-14 | -13.678 | | 520 | 599.1 | | - • | 11.433 | | 12,000 | 11.764 | 12.768 | -7.815 | 4.82 | 61.66 | 1.48E-14 | -13.829 | | 540 | 599.2 | | | 11,200 | • | 11.942 | 11.750 | 12.203 | -7.880 | 4.14 | 71.56 | 1.10E-14 | -13.960 | | 560 | 599.3 | | | 10,968 | | 11.884 | 11.735 | 12,147 | -7.936 | 3.64 | 83.76 | 8.46E-15 | -14.072 | | 580 | 599.4 | | | 10.737 | | 11.826 | 11.720 | 12,097 | -7.985 | 3.27 | 97.86 | 6.79E-15 | -14,168 | | 600 | 599.5 | | | 10,508 | | 11.769 | 11.706 | 12.052 | -8.030 | 3.00 | 113.10 | 5.61E-15 | -14.251 | | | | _ | | - | | - | | _ | | _ | - | | | | 620 | 599.5 | | | 10,281 | | 11.712 | 11.692 | 12.011 | -8.071 | 2.79 | 128.47 | 4.75E-15 | -14.323 | | 640 | 599.6 | | | 10,054 | | 11.655 | 11.677 | 11.973 | -8.109 | 2.63 | 143.10 | 4.10E-15 | -14.387 | | 660 | 599.6 | | | 9.829 | | 11.599 | 11.663 | 11.937 | -8.145 | 2.50 | 156.39 | 3.59E-15 | -14.445 | | 680 | 599.7 | | | 9,606 | | 11.543 | 11.649 | 11.902 | -8.180 | 2.39 | 168.14 | 3.17E-15 | -14.498 | | 700 | 599.7 | | | 9.383 | | 11.487 | 11.635 | 11.870 | -8.212 | 2.30 | 178.44 | 2.83E-15 | -14.549 | | 720 | 599.7 | | | 9.162 | | 11.432 | 11.621 | 11.839 | -8.243 | 2.21 | 187.55 | 2.54E-15 | -14.596 | | 740 | 599.8 | | | 8.942 | | 11.377 | 11.607 | 11.809 | -8.273 | 2.14 | 195.75 | 2.28E-15 | -14.641 | | 760 | 599.8 | | | 8,723 | | 11.322 | 11.593 | 11.780 | -8.302 | 2.07 | 203.36 | 2.07E-15 | -14.685 | | 780 | 599.8 | | | 8,506 | | 11.268 | 11.580 | 11.752 | -8.330 | 2.00 | 210.63 | 1.88E-15 | -14.727 | | 800 | 599.8 | | | 8,290 | | 11.214 | 11.566 | 11.726 | -8.356 | 1.93 | 217.82 | 1.71E-15 | -14.767 | | 820 | 599.8 | | | 8,075 | | 11.160 | 11.552 | 11.700 | -8.382 | 1.87 | 224.95 | 1.56E-15 | -14.807 | | 840 | 599.8 | | | 7.861 | • | 11,107 | 11.539 | 11.676 | -8.406 | 1.82 | 232.21 | 1.43E-15 | -14.845 | | 860 | 599.9 | | | 7.648 | | 11.053 | 11.526 | 11,652 | -8.430 | 1.76 | 239.70 | 1.31E-15 | -14.881 | | 880 | 599.9 | | | 7.437 | | 11,000 | 11.512 | 11,629 | -8.453 | 1.71 | 247.46 | 1.21E-15 | -14.917 | | 900 | 599.9 | | | 7,227 | | 10.948 | 11.499 | 11.607 | -8.475 | 1.67 | 255.56 | 1.12E-15 | -14.952 | | 920 | 599.9 | | | 7,018 | | 10.896 | 11.486 | 11.585 | -8.497 | 1.62 | 264.02 | 1.04E-15 | -14.985 | | 940 | 599.9 | | | 6,810 | | 10.844 | 11.473 | 11.564 | -8.518 | 1.58 | 272.85 | 9.61E-16 | -15.017 | | 960 | 599.9 | | | 6,603 | | 10.792 | 11.460 | 11.544 | -8.538 | 1.54 | 282.09 | 8.94E-16 | -15.049 | | 980 | 599.9 | | | 6.397 | | 10,740 | 11.447 | 11,525 | -8.557 | 1.50 | 291.73 | 8.34E-16 | -15.079 | | 1000 | 599.9 | | | 6,193 | | 10.689 | 11.434 | 11.506 | -8.576 | 1.46 | 301.77 | 7.79E-16 | -15,108 | | 1050 | 599.9 | | | | | 10.562 | 11.402 | 11.461 | -8.621 | 1.39 | 328.57 | 6.65E-16 | -15.177 | | 1100 | 599.9 | | | | | 10.437 | 11.370 | 11.418 | -8.664 | 1.32 | 357.71 | 5.75E-16 | -15.241 | | 1150 | 599.9 | | | | | 10.314 | 11.339 | 11.378 | -8.703 | 1.27 | 388.81 | 5.03E-16 | -15,299 | | 1200 | 600.0 | | | | | 10,192 | 11.309 | 11.341 | -8.741 | 1.22 | 421.32 | 4.44E-16 | -15.352 | | 1250 | 600.0 | | | | | 10,072 | 11.278 | 11,305 | -8.777 | 1.18 | 454.84 | 3.96E-16 | -15,402 | | 1300 | 600.0 | | | | | 9.954 | 11.249 | 11.270 | -8.812 | 1.15 | 488.72 | 3.56E-16 | -15.448 | | 1350 | 600.0 | | | | | 9.837 | 11.219 | 11.237 | -8.845 | 1.13 | 522.36 | 3.23E-16 | -15.491 | | 1400 | 600.0 | | | | | 9.721 | 11.190 | 11.204 | -8.877 | 1.11 | 555.25 | 2.94E-16 | -15.531 | | 1450 | 600.0 | | | | | 9.607 | 11.161 | 11.173 | -8.909 | 1.09 | 587.07 | 2.70E-16 | -15.569 | | 1500 | 600.0 | | | | | 9.495 | 11.133 | 11,143 | -8.939 | 1.08 | 617.46 | 2.48E-16 | -15.605 | | | | | | | | | | | -04,5, | | | | | | 1600 | 600.0 | | | | | 9.274 | 11.077 | 11.084 | -8,998 | 1.05 | 673.05 | 2.12E-16 | -15.673 | | 1700 | 600.0 | | | | | 9.058 | 11.023 | 11.028 | -9.054 | 1.04 | 722.05 | 1.84E-16 | -15.735 | | 1800 | 600.0 | | | | | 8.848 | 10.970 | 10.973 | -9.108 | 1.03 | 764.67 | 1.61E-16 | -15.793 | | 1900 | 600.0 | | | | | 8.643 | 10.918 | 10.921 | -9.161 | 1.02 | 802.27 | 1.42E-16 | -15.849 | | 2000 | 600.0 | | | | | 8.443 | 10.868 | 10.870 | -9.212 | 1.02 | 835.80 | 1.25E-16 | -15,902 | | 2100 | 600.0 | | | | | 8.248 | 10.819 | 10.820 | -9.262 | 1.02 | 866.06 | 1.11E-16 | -15.953 | | 2200 | 600.0 | | | | | 8.057 | 10.771 | 10.772 | -9.310 | 1.01 | 894.31 | 9.95E-17 | -16.002 | | 2300 | 600.0 | | | | | 7.870 | 10.724 | 10.724 | -9.357 | 1.01 | 920.97 | 8.91E-17 | -16.050 | | 2400 | 600.0 | | | | | 7.688 | 10.678 | 10.678 | -9.403 | 1.01 | 946.23 | 8.01E-17 | -16.097 | | 2500 | 600.0 | | | | | 7.510 | 10.633 | 10.633 | -9.448 | 1.01 | 971.08 | 7.21E-17 | -16.142 | FXOSPHERIC TEMPERATURE = 650 K | HE I GHT | K
TEMP | LOG(N(N2)
/M3) | LOG(N(02)
/M3) | LOG(N(O)
/M3) | LOG(N(A)
/M3) | LOG(N(HE)
/M3) | LOG (N(H)
/M3) | LOG(N
/M3) | LOG
(PRESSURE
NT/M2) | | DENSITY
SCALE HT
KM | DENSITY
KG/M3 | LOG(DEN
KG/M3) | |------------|----------------|-------------------|-------------------|------------------|------------------|-------------------|-------------------|------------------|----------------------------|----------------|---------------------------|----------------------|--------------------| | 90 | 188.0 | 19.746 | 19,170 | 17,390 | 17.824 | 14.573 | | 19.854 | 732 | 28.91 | 5,63 | 3.43E-06 | £ //E | | 92 | 188.1 | 19.592 | 19,009 | 17,547 | 17,669 | 14.418 | | 19.700 | 886 | 28.85 | 5.59 | 2.40E-06 | -5.465
-5.620 | | 94 | 188.4 | 19.437 | 18.843 | 17.646 | 17.515 | 14.264 | | 19.545 | -1.040 | 28.76 | 5.56 | 1.68E-06 | -5.776 | | 96 | 189.0 | | 18.673 | 17.686 | 17.360 | 14.109 | | 19.390 | -1.193 | 28.65 | 5.54 | 1.17E-06 | -5.932 | | 98 | 190.2 | 19.127 | 18.500 | 17.689 | 17,205 | 13.954 | | 19.236 | -1.345 | 28.52 | 5.56 | 8.15E-07 | -6.089 | | 100 | 192.2 | | 18.325 | 17,667 | 17,051 | 13.800 | | 19.082 | -1.494 | 28.36 | 5.65 | 5.69E-07 | ~6.245 | | 102 | 195.3 | | 18.152 | 17.604 | 16.839 | 13,775 | | 18.931 | -1.638 | 28.21 | 5.65 | 4.00E-07 | -6.398 | | 104 | 200.0 | | 17.975 | 17.548 | 16.628 | 13.748 | | 18.781 | -1.778 | 28.02 | 5.67 | 2.81E-07 | -6.552 | | 106 | 206.7 | | 17.795 | 17.495 | 16.419 | 13.720 | | 18.631 | -1-914 | 27.79 | 5.69 | 1.97E-07 | -6.705 | | 108 | 215.8 | 18.370 | 17.611 | 17.437 | 16.212 | 13.690 | | 18.483 | -2.043 | 27.53 | 5.74 | 1.39E-07 | 6.857 | | 110 | 227.6 | 18.222 | 17.423 | 17.374 | 16.011 | 10 | | | | | | | . • | | 115 | 265.5 | 17.872 | 16.978 | 17.191 | 15.541 | 13.657 | | 18.338 | -2.165 | 27.25 | 5.87 | 9.85E-08 | -7.006 | | 120 | 307.7 | | 16,616 | 17.002 | 15,132 | 13.576 | | 18.000 | -2.436 | 26.57 | 6.69 | 4.41E-08 | -7.356 | | 125 | 351.4 | 17.299 | 16.314 | 16,827 | 14.775 | 13.501 | | 17.709 | -2.663 | 26.01 | 7.84 | 2.21E-08 | -7.656 | | 130 | 395.0 | 17.063 | 16.051 | 16,671 | 14.460 | 13.436
13.378 | | 17.458 | -2.856 | 25.51 | 8.99 | 1.22E-08 | -7.915 | | 135 | 434.7 | 16.855 | 15.820 | 16.534 | 14.182 | 13.328 | | 17.241 |
-3.023 | 25.05 | 10.33 | 7.24E-09 | -8.140 | | 140 | 468.5 | 16,671 | 15,613 | 16,415 | 13.933 | 13.286 | | 17.052 | -3.170 | 24.61 | 11.83 | 4.61E-09 | -8.337 | | 145 | 496.2 | 16.504 | 15,426 | 16.309 | 13.705 | 13.250 | | 16.887
16.740 | -3.302 | 24.18 | 13.36 | 3.09E-09 | -8,509 | | 150 | 518.4 | 16.350 | 15.253 | 16.213 | 13.494 | 13.219 | 12,279 | 16.608 | -3.424 | 23.76 | 14.82 | 2.17E-09 | -8.664 | | 155 | 536.4 | 16.205 | 15.090 | 16,124 | 13.294 | 13,192 | 12.224 | 16.486 | ≈3.537
≈3.645 | 23.35 | 16.16 | 1.57E-09 | -8.804 | | | | - | | | | | | 104480 | -30047 | 22.95 | 17.37 | 1.17E-09 | -8,933 | | 160 | 551.0 | 16.068 | 14.935 | 16.040 | 13.103 | 13.166 | 12.177 | 16.372 | -3.747 | 22.55 | 18.45 | 8.82E-10 | -9.054 | | 170 | 573.0 | 15.809 | 14.641 | 15.885 | 12.740 | 13.121 | 12.102 | 16.163 | -3.938 | 21.78 | 20.34 | 5.27E-10 | -9.278 | | 180
190 | 588.7 | 15.563 | 14.362 | 15.740 | 12.395 | 13,081 | 12.047 | 15.973 | -4.117 | 21.06 | 21.97 | 3.28E-10 | -9.484 | | 200 | 600.3
609.1 | 15.327 | 14.093 | 15.601 | 12.062 | 13.043 | 12.005 | 15.796 | -4.286 | 20.38 | 23.46 | 2.11E-10 | -9.675 | | 210 | 616.0 | 15.097
14.872 | 13.832 | 15.467 | 11.737 | 13.007 | 11.964 | 15.630 | -4.446 | 19.75 | 24.86 | 1.40E-10 | -9.855 | | 220 | 621.5 | 14.652 | 13.576 | 15.337 | 11.419 | 12.973 | 11.937 | 15.472 | -4. 598 | 19.18 | 26.17 | 9.45E-11 | -10.025 | | 230 | 626.0 | 14.434 | 13.324
13.076 | 15.209 | 11.106 | 12.939 | 11.915 | 15.322 | - 4.745 | 18.67 | 27.43 | 6.50E-11 | -10.187 | | 240 | 629.6 | 14.219 | 12.831 | 15.083
14.960 | 10.796 | 12.907 | 11.896 | 15.177 | -4.886 | 18.22 | 28.62 | 4.55E-11 | -10.342 | | 250 | 632.5 | 14.006 | 12.588 | 14,837 | 10.491
10.188 | 12.875 | 11.880 | 15.038 | -5.023 | 17.83 | 29.75 | 3.23E-11 | -10.491 | | | 03243 | | 12,000 | 14,637 | 10.100 | 12.843 | 11.866 | 14.903 | -5.156 | 17.48 | 30.81 | 2.32E-11 | -10.634 | | 260 | 635.0 | 13.795 | 12,347 | 14,716 | 9.888 | 12.812 | 11.854 | 14.772 | -5.285 | 17.18 | 31.79 | 1.69E-11 | -10.773 | | 270 | 637.0 | 13.586 | 12.108 | 14.596 | 9.590 | 12.782 | | 14.644 | -5.412 | 16.91 | | 1.24E-11 | -10.907 | | 280 | 638.7 | 13.378 | 11.871 | 14.477 | 9.294 | 12.752 | | 14.519 | -5.535 | 16,67 | | 9.15E-12 | -11.039 | | 290 | 640.1 | 13.171 | 11.635 | 14.358 | 9.000 | 12.722 | | 14.397 | -5.657 | 16.45 | | 6.81E-12 | -11.167 | | 300 | 641.3 | 12.966 | 11.401 | 14.241 | 8.708 | 12.692 | 11.813 | 14.277 | -5.776 | 16.24 | | 5.10E-12 | -11.292 | | 310 | 642.4 | 12,762 | 11.168 | 14.124 | 8.417 | 12.662 | 11.805 | 14.159 | -5.894 | 16.05 | | 3.84E-12 | -11.416 | | 320 | 643.2 | 12.559 | 10.936 | 14.007 | 8.127 | 12.633 | 11.796 | 14.043 | -6.009 | 15.85 | | 2.90E-12 | -11.537 | | 330 | 644.0 | 12.356 | 10,705 | 13.892 | 7.839 | | | 13.929 | -6.122 | 15.65 | | 2.21E-12 | -11,657 | | 340
350 | 644.7 | 12.155 | 10.475 | 13.776 | 7.552 | | | 13.817 | -6.234 | 15,44 | 37.08 | 1.68E-12 | -11.774 | | 350 | 645.2 | 11.954 | 10.246 | 13,662 | 7.266 | 17.546 | 11.772 | 13.707 | -6.344 | 15.21 | | 1.29E-12 | -11.891 | | 360 | 645.7 | 11.755 | 10.017 | 13.547 | 6.981 | 12.517 | 11.764 | 13.599 | -6.451 | 14 04 | 27 08 | 0 675 10 | 13.004 | | 370 | 646.1 | 11,556 | 9.790 | 13.434 | 6.698 | | | 13.494 | ~6.471 | 14.96
14.68 | | 9.87E-13 | -12.006 | | 380 | 646.5 | 11.357 | 9.564 | 13,320 | 6,415 | | | 13.391 | #6.659 | 14.36 | | 7.59E-13
5.86E-13 | -12.119 | | 390 | 646.8 | 11.160 | 9.338 | 13.207 | 6.134 | | | 13.291 | -6.759 | 14.01 | | 4.54E-13 | -12.232
-12.343 | | 400 | 647.1 | 10,963 | 9,113 | 13.095 | | | | 13,193 | -6.856 | 13,60 | | 3.53E-13 | -12.343
-12.453 | | | | | | | | | • | | | | - 7500 | ~ | マルヒュマンフ | EXOSPHERIC TEMPERATURE = 650 K | LOG (DEN
KG/M3) | -12.668
-12.876
-13.077
-13.268 | -13.612
-13.762
-13.895
-14.013 | 11111111111111111111111111111111111111 | $\frac{1}{2}$ | 11111111111111111111111111111111111111 | |----------------------------|---|--|---|---|---| | DENSITY
KG/M3 | 2.15E-13
1.33E-13
8.38E-14
5.40E-14 | | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 11.23.568
22.33.568
23.33.568
24.358
25.33.568
26.33.568
26.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27.33.568
27. |
1.97E-16
1.90E-16
1.036E-16
1.036E-16
1.036E-16
1.036E-16
1.036E-16
1.036E-17
1.036E-17 | | DENSITY
SCALE HT
KM | 400.94
42.41
44.31
46.31
50.87 | 20000 | 105.04
119.55
134.12
148.10
160.91
182.35
191.28
191.28
199.17 | 22112
22112
22122
22122
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124
22124 | 629.77
694.34
753.41
807.01
854.87
897.50
936.33
971.90
1004.73 | | MEAN
MOL WT | 12.66
11.54
10.29
8.99 | 4 4 4 6 6 1 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 8889999999999999999999999999999999999 | 22222222222222222222222222222222222222 | 111111111111111111111111111111111111111 | | LGG
(PRFSSURE
NT/M2) | -7.039
-7.207
-7.358
-7.490 | ~~~~~ | .8 .016
.8 .016
.8 .101
.8 .139
.8 .176
.8 .210
.8 .243
.8 .275
.8 .335 | ### ### ### ### #### #### ############ | .90.071
.90.071
.90.071
.90.123
.90.173
.90.267
.90.395
.90.396 | | L0G(N | 13.010
12.841
12.690
12.558 | 12.347
12.265
12.194
12.133 | 12.031
11.987
11.996
11.908
11.872
11.8837
11.772
11.772 | 0.000 | 111.030
10.976
10.976
10.874
10.874
10.780
10.795
10.691 | | LOG (N (H) | 11.720
11.706
11.691
11.677 | 11.650
11.636
11.623
11.609 | 11.583
111.556
111.556
111.553
111.517
111.505
111.479 | 11. 4454
11. 4454
11. 4424
11. 417
11. 405
11. 380
11. 380
11. 380
11. 380
11. 380
11. 250
11. 220
11. 220
11. 11. 11. 11. 11. 11. 11. 11. 11. 11. | 111.015
10.965
10.965
10.869
10.777
10.732
10.669 | | LOG (N (HE)
/M3) | 70000 | 12.073
12.019
11.965
11.912 | 11.807
11.754
11.754
11.651
11.599
11.548
11.497
11.347 | 11,297
111,248
111,199
111,101
11,005
11,005
11,005
11,005
10,957
10,957
10,957
10,293
10,293
10,293
10,293
10,293
10,184
10,006
9,969 | 9 9 9 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | LOG(N(A) | | | | | | | LOG(N(O) | 2 8 9 2 5 8 4 4 5 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 11.559
11.345
11.132
10.921 | 10.711
10.502
10.294
10.087
9.882
9.678
9.475
9.273 | 8 8 8 6 7 7 7 8 8 8 8 8 7 7 7 8 8 8 8 8 | | | LOG (N (O2) | 8.666
8.222
7.781
7.342
6.906 | 6.473 | | | | | EMP LOG(N(N2) 1
K /M3) | 18
18
19
14
10 | 8,652
8,275
7,900
7,528
7,158 | 6,790
6,424
6,060 | | | | TEMP L | 4 4 8 4 4 4 8 4 4 8 8 4 8 8 8 8 8 8 8 8 | 6448
6449
6449
6449
6449
6449
6449 | 44444444444444444444444444444444444444 | 4444444444
000000000000000000000000000 | 44444444444444444444444444444444444444 | | HE I GHT
KM | 0 4 4 8 8 0 | 525
540
580
600
600 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 8820
8860
9860
9900
9900
1000
1100
11200
1200
1350
1450 | 1600
1700
1900
2000
2100
2300
2400
2500 | EXOSPHERIC TEMPERATURE = | LOG (DEN
KG/M3) | 1111 | 11111
6666
8766
8766
8766
8766
8766
8766 | 1111111
0000
0000
0000
0000
0000
0000 | 18.782
18.908
19.026
19.241 | N Q Q - 4 Q Q M | 10.672
10.800
10.800
11.047
111.166
11.397
11.510 | -11.839
-11.946
-12.052
-12.157 | |----------------------------|---|--
--|---------------------------------------|--|--|--| | DENSITY
KG/M3 | | 8.15E.07
5.69E.07
3.99E.07
2.80E.07
1.99E.07 | 2.208
2.226
3.226
4.3236
4.336
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206
5.206 | tem tea | 2.39E-10
1.61E-10
1.10E-10
5.49E-11
2.89E-11 | | 1.45E.12
1.13E.12
8.87E.13
6.97E.13 | | DENSITY
SCALE HT
KM | | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 5.87
7.92
7.92
10.92
112.50
113.63 | | 24,000 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 40.32
40.78
41.23
42.14 | | MEAN
MOL WI | 0.00 - 01 | 28.52
28.36
28.21
28.21
27.79
27.53 | 22222222222222222222222222222222222222 | a | 20.67
20.03
19.03
18.53
18.55
18.55
18.15 | 11.00 | 15.39
15.18
14.94
14.68 | | LOG
(PRESSURE
NT/M2) | 1 1 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | -1,345
-1,494
-1,638
-1,777
-1,912 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 13 2600
13 600
13 600
14 608 | 164.508
144.508
144.508
144.648
144.782
15.0912 | 15.160
15.280
15.280
15.893
15.655
15.655
15.655
15.655
16.058 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | L0G(N
/M3) | 7 C C C C C C C C C C C C C C C C C C C | 19.236
19.082
18.931
18.780
18.630 | 40000 | 62
50
39
19 | 15.8888
15.8888
15.8888
15.2888
15.751
15.051 | 14.866
14.745
14.8526
14.9397
14.9397
14.175
13.9661 | 13.753
13.652
13.553
13.456
13.451 | | LOG (N (H)
/M3) | | | | | 111.901
111.857
111.805
111.785
111.769 | 111.741
111.730
111.730
111.709
111.693
111.668 | 11.653
11.646
11.639
11.632
11.625 | | LÓĞ (N (HE)
/M3) | 126 | 13,954
13,799
13,774
13,748
13,719 | 13,655
13,672
13,697
13,649
13,372
13,322
13,280 | | 13,040
13,006
12,973
12,941
12,880
12,851 | 12,822
12,793
12,765
12,703
12,682
12,682
12,654
12,657
12,657 | 12.547
12.520
12.494
12.467
12.441 | | LUG (N(A)
/M3) | 17.824
17.669
17.515 | 17.205
17.050
16.839
16.628
16.418 |
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.001
156.00 | mm mount | 12.179
11.873
11.574
11.281
10.992
10.707 | 10.144
9.867
9.867
9.891
9.0317
9.0317
8.505
8.505
7.970 | 7,440
7,176
6,913
6,652
6,391 | | LGG (N (O) | 17.390
17.547
17.646
17.686 | 17.688
17.667
17.603
17.547
17.493 | 17.371
17.187
16.999
16.825
16.570
16.535
16.18 | 24 00L | 15,631
15,505
15,382
15,262
15,144
15,028
14,913 | 14.688
14.688
14.577
14.3467
14.3467
14.248
14.032
13.925 | 13,712
13,606
13,501
13,396
13,291 | | L06 (%(02) | თითთ | 18,500
18,325
18,151
17,975
17,795 | 17,4422
16,978
16,978
16,322
16,064
15,838
15,636 | nn 444 | 134, 181
134, 935
134, 6935
134, 6935
12, 9938
12, 9938 | 12.546
12.324
12.324
11.683
11.665
11.665
11.232
11.232
10.803 | 10,378
10,167
9,957
9,747
9,538 | | TEMP LUG(N(M2) H
K /M3) | 9.59 | 19, 127
18, 973
18, 822
18, 671
18, 519
18, 369 | 18, 221
17, 872
17, 569
17, 305
17, 073
16, 869
16, 589 | 6.37
6.23
6.10
5.85
5.85 | 15,400
15,184
14,973
14,562
14,562
14,361 | 13,966
13,770
13,577
13,194
13,003
12,626
12,626
12,639 | 12.066
11.882
11.697
11.514 | | TEMP L(| 2 20 20 CO | 192.5
192.5
195.8
200.7
207.9 | 230.1
270.4
315.3
361.7
468.2
451.0
488.1 | 2 d m c c | 650.8
659.1
6659.1
671.0
675.3 | 681.8
686.3
6886.3
6886.1
691.8
692.8
692.8 | 694
695
695
8
696
696
7 | | KF1GHT
KP | 90
94
96 | 98
100
102
104
106 | 1110
1120
1120
1120
1120
140 | 150
155
160
170
180 | 200
200
220
230
240
250 | 260
270
280
280
390
390
390
390 | 360
370
380
400 | EXOSPHERIC TEMPERATURE = 700 K | LOG (DEN'
KG/M3) | 112.664
113.6664
113.66666666666666666666666666666666666 | 11111111111111111111111111111111111111 | 4444444 | 11111111111111111111111111111111111111 | |----------------------------|--|--
---|--| | DENSITY
KG/M3 | 11.22.00.00.00.00.00.00.00.00.00.00.00.00. | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 22.22.22.22.22.22.22.22.22.22.22.22.22. | 1.93E
1.693E
1.693E
1.640E
1.23E
1.628E
1.668E
1.668E
1.768E
1.768E
1.768E
1.768E | | DENSITY
SCALE HT
KM | 4443
4443
44443
4444
4444
5444
5444
544 | 87.54
99.43
112.63
126.58
140.64
156.75
178.10
188.15 | 204, 86
22111.885
2224.885
2224.833
2225.833
2225.833
2225.834
2225.834
2225.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
2226.834
222 | 562,35
632,35
702,63
770,02
891,23
891,23
944,64
944,64
1037,88 | | MEAN
MOL WT | 11111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
2111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
21111
211 | 44666666666666666666666666666666666666 | 00000000000000000000000000000000000000 | 00100000 | | LOG
(PRFSSURE
NT/M2) | ************************************** | 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | LOG (N | 13.178
112.867
112.867
112.472
112.458
112.959
112.134 | 12.027
12.025
11.925
11.896
11.886
11.858
11.782 | | 10.985
10.985
10.885
10.786
10.741
10.657
10.657 | | LOG (N (H) | 11.598
11.598
11.598
11.594
11.593
11.593
11.508
11.508 | 111.6483
111.6474
111.6447
111.6447
111.6447
111.6423
111.3899 | 111, 364
111, 341
111, 341
111, 341
111, 341
111, 341
111, 241
111, 241
111 | 10,956
10,910
10,865
10,82
10,777
10,735
10,694
10,614
10,576 | | LOG (N (HE)
/M3) | 12,389
12,286
12,286
12,235
12,184
12,034
11,984
11,984 | 11.886
111.790
111.742
111.694
111.694
111.552
111.552 | 111
413
111,367
111,227
111,231
111,231
111,003
111,003
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,000
111,00 | 9 9 7 9 6 1 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | LOG (N (A)
/M3) | | | | | | LOG (N (O) | 13.083
12.672
12.672
12.266
12.266
11.8664
11.666
11.666 | 11.0077
10.883
10.690
10.498
10.307
10.118
9.929
9.755 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | LOG(N(02) | 9.123
8.3710
8.3710
7.6893
7.6898
7.688
6.686 | | | | | LOG (N (N2) | 10.967
10.267
10.267
9.899
9.536
9.536
9.848
8.834
8.834
7.796 | 7.454
7.115
6.777
6.441
6.107 | | | | TEMP LO | 6998 6996 6998 6998 6998 6998 6998 6998 | 66999999999999999999999999999999999999 | | 7000
7000
7000
7000
7000
7000
7000
700 | | HE I GHT
KM | 444 w w w w w w o o o o o o o o o o o o | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 8820
8840
8860
9880
990
990
1000
1100
1150
1150
1150
1150 | 1600
1700
1800
1900
2000
2200
2300
2400
2500 | EXOSPHERIC TEMPERATURE = 800 K | LOG (DEN
KG/M3) | 4466 | 111111111111111111111111111111111111111 | 17,000
17,000
17,005
17,005
18,108
18,306
18,471 | -8.868
-8.868 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 20 6 51 | 110.054
110.054
110.055
111.065
111.169 | -11.568
-11.665
-11.760
-11.854 | |----------------------------|---|---|---|------------------
---|---|--|--| | DENSITY
KG/M3 | 11 11 11 11 11 11 | 5.68E-07
2.79E-07
1.96E-07 | 4.70E-08
2.23E-08
1.25E-08
1.25E-09
4.95E-09
3.98E-09
3.38E-09 | 35 | 1.056.09
6.566.10
2.906.10
2.016.10
1.426.10 | 7.45E-11
5.51E-11
4.12E-11
3.11E-11 | 2.575.11
1.085.11
1.085.11
1.065.11
8.616.12
6.775.12
7.255.12
3.865.12 | 2.70E-12
2.16E-12
1.74E-12
1.40E-12
1.13E-12 | | DENSITY
SCALE HT
KM | N N N N N N N N N N N N N N N N N N N | 1000000
10000
144000 | 5.88
6.78
8.05
9.32
10.78
12.39
15.06 | F- 80 | 22222222222222222222222222222222222222 | | 4450
4450
4450
4450
4450
4450
4450
4450 | 444
45.37
45.91
46.41 | | WEAN
MOL WT | | 28 21
28 21
28 02
27 79 | 27
26
26
26
26
26
26
26
27
27
24
24
24
24
26
26
26
26
27
27
27
27
27
27
27
27
27
27
27
27
27 | 23,39 | 23.05
22.40
21.77
21.17
20.61
20.08 | 19.14
18.73
18.36 | 117.45
117.45
116.72
116.73
116.73
116.73 | 15.95
15.79
15.63
15.47 | | LOG
(PRFSSURE
N1/M2) | | 11.493
-11.493
-11.776
-1.909 | ところうく をきき | 52 | 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 8 4 5 5 | 15.006
15.006
15.006
15.006
15.006
15.006
15.006
15.006
15.006 | -8.952
-6.044
-6.134
-6.223 | | LOGIN | 8 L L L L | 19.082
18.930
18.779
18.629 | 18.335
17.998
17.713
17.470
17.260
17.079
16.921 | 16.656 | 16.437
16.246
16.074
15.916
15.468
15.629 | 244 | 14.900
14.799
14.591
14.591
14.299
14.197 | 14,009
13,917
13,826
13,736 | | L0G(N(H) | | | | | 11,910
11,830
11,769
11,672
11,674 | | 11.524
11.524
11.505
11.488
11.488
11.473 | 11.459
11.452
11.446
11.439 | | LOG (N (HE)
/M3) | 14.573
14.418
14.264
14.108 | 113.77.09.113.77.09.113.77.79.09.113.77.79.09.113.77.79.09.113.77.79.09.113.77.79.09.113.77.79.79.113.77.79.113.77.79.113.77.79.113.77.79.113.77.79.113.77.79.113.77.79.113.77.79.113.77.79.113.77.79.113.77.79.113.77.79.113.77.79.113.77.79.79.79.79.79.79.79.79.79.79.79.79. | 113.651
113.6551
113.6555
113.6489
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113.633
113 | 20 | 13,149
13,106
13,067
13,033
13,001
12,971 | 2 2 8 8 1 2 1 3 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 | 12,809
12,784
12,734
12,734
12,686
12,682
12,682 | 12.591
12.567
12.544
12.521
12.698 | | LDG (N(A) | 17.824
17.669
17.515
17.359 | 17.050
16.838
16.627
16.418
16.212 | 16,012
15,549
15,811
14,811
14,213
14,251
14,019 | ויז ניז |
13.00
12.00
12.00
12.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00 | | 10.310
10.067
9.8826
9.8826
9.112
8.877
8.642 | 8.177
7.946
7.716
7.486
7.258 | | LOG(N(0) | ww.000 | 17.666
17.666
17.546
17.491
17.432 | 17,367
17,182
16,994
16,821
16,821
16,537
16,537 | 22
14 | 15.067
15.067
15.0797
15.676
15.561
15.450 | 4 95 95 95 95 95 95 95 95 95 95 95 95 95 | 14.832
14.534
14.540
14.540
14.349
14.254
14.160 | 13.973
13.881
13.788
13.696
13.696 | | L06 (N (02) | 19.170
19.009
18.843
18.673 | 18,324
18,150
17,974
17,793 | 17,421
16,980
16,627
16,336
16,886
15,867
15,673 | 15,339 | 14.0052
14.050
14.050
14.050
13.8888
13.6888 | 13.466
13.263
13.062
12.864 | 12.667
12.473
12.087
12.087
11.897
11.518
11.518
11.331 | 10.958
10.772
10.588
10.404
10.221 | | TEMP LOG(N(N2) | 7 6 6 7 6 6 7 6 6 7 6 6 7 6 7 6 7 6 7 6 | 19,12,12,18,972
18,821
18,670
18,518 | 10.21.00
17.51.00
17.51.00
17.51.00
17.60
16.80
16.71.00
16.56
16.56 | 4.1.28 | 16.162
15.932
15.320
15.320
15.320
15.131 | 444 4· | 14.069
113.069
113.069
113.069
113.069
112.068
112.068 | 12.567
12.405
12.243
12.082
11.922 | | TEMP L
K | 8 8 8 8 8 | 192.9
196.6
202.1
210.0 | 233
279
279
328
328
473
522
532
539
539 | 91. | 639°1
673°3
698°3
717°1
731°7
743°1 | 10000 | 778.1
781.0
783.4
785.4
787.1
789.9
791.0 | 792.8
793.5
794.1
794.7 | | HE I GHT
KM | 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 100
100
104
106
108 | 110
120
120
130
140
140 | N W | 160
170
180
200
210 | im arm ar | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 350
370
380
390
400 | | | _ | | _ | | | | | | | | | | | |--------------|----------------|---------------------|-------------------|------------------|------------------|-------------------|------------------|------------------|----------------------------|-------|---------------------------|----------------------|--------------------| | HE I GHT | TEMP I | LOG (N (N2)
/M3) | LOG(N(O2)
/M3) | LOG(N(O)
/M3) | LOG(N(A)
/M3) | LOG(N(HE)
/M3) | LOG(N(H)
/M3) | LOG(N
/M3) | LOG
(PRFSSURE
NT/M2) | | DENSITY
SCALE HT
KM | DENSITY
KG/M3 | LOG(DEN | | 420 | 796.0 | 11,603 | 9.857 | 13,422 | 6.804 | 12,452 | 11.421 | 13,476 | -6.483 | 14.90 | 47.84 | 7.41E-13 | -12,130 | | 440 | 796.6 | 11.287 | 9.496 | 13,241 | 6.352 | 12.407 | 11.409 | 13.310 | -6.648 | 14.43 | 48.80 | 4.90E-13 | -12.310 | | 460 | 797.1 | 10.972 | | 13.062 | 0,072 | 12.362 | 11.397 | 13.151 | -6.807 | 13.87 | 49.81 | 3.26E-13 | -12.486 | | 480 | 797.6 | 10.660 | 8.780 | 12.883 | | 12.317 | 11.385 | 13,000 | -6.958 | 13.20 | 50.94 | 2.19E-13 | -12,659 | | 500 | 797.9 | 10.350 | 8.425 | 12.706 | | 12.273 | 11.374 | 12.858 | -7.100 | 12.43 | 52.28 | 1.49E-13 | -12.827 | | 520 | 798.2 | 10.041 | 8.073 | 12.530 | | 12.229 | 11.363 | 12.726 | -7.232 | 11.56 | 53.90 | 1.02E-13 | -12.991 | | 540 | 798.4 | 9.735 | 7.723 | 12,355 | | 12.185 | 11.352 | 12,605 | -7.353 | 10.62 | 55.91 | 7.09E-14 | -13,149 | | 560 | 798.6 | 9.430 | 7.375 | 12,181 | | 12.141 | 11.341 | 12.494 | -7.463 | 9.64 | 58.43 | 5.00E-14 | -13,301 | | 580 | 798.8 | 9,128 | 7.030 | 12,008 | | 12.098 | 11.330 | 12.395 | -7.562 | 8.67 | 61.62 | 3.58E-14 | -13.446 | | 600 | 798.9 | 8.827 | 6.686 | 11.836 | | 12,055 | 11.319 | 12.307 | -7.650 | 7.75 | 65.65 | 2.61E-14 | -13.583 | | 620 | 799.0 | 8,528 | 6.344 | 11,665 | | 12,012 | 11.308 | 12.229 | -7.728 | 6.92 | 70.70 | 1.95E-14 | -13.711 | | 640 | 799.1 | 8,230 | 6.005 | 11,495 | | 11.970 | 11.297 | 12.159 | -7.798 | 6.19 | 76.95 | 1.48E-14 | 13.828 | | 660 | 799.2 | 7.935 | | 11,326 | | 11.927 | 11.286 | 12.097 | -7.860 | 5.57 | 84.56 | 1.16E-14 | -13.936 | | 680 | 799.3 | 7.641 | | 11.158 | | 11.885 | 11.276 | 12.042 | -7.916 | 5.06 | 93.60 | 9.25E-15 | -14.034 | | 700 | 799.4 | 7.349 | | 10,991 | | 11.844 | 11.265 | 11.991 | -7.966 | 4.64 | 104.07 | 7.55E-15 | -14.122 | | 720 | 799.4 | 7.058 | | 10.826 | | 11.802 | 11.255 | 11.945 | -8.012 | 4.30 | 115.81 | 6.29E-15 | -14,201 | | 740 | 799.5 | 6.769 | | 10,661 | | 11.761 | 11.244 | 11.902 | -8.055 | 4.03 | 128.55 | 5.34E-15 | -14.272 | | 760 | 799.5 | 6.482 | | 10.497 | | 11.720 | 11.234 | 11.862 | -8.095 | 3.81 | 141.87 | 4.61E-15 | -14.337 | | 780 | 799.6 | 6.196 | | 10.333 | | 11.679 | 11.224 | 11.824 | -8.133 | 3.64 | 155.31 | 4.03E-15 | -14.395 | | 800 | 799.6 | | | 10,171 | | 11.638 | 11.213 | 11.788 | -8.170 | 3.49 | 168.45 | 3.56E-15 | -14.449 | | 820 | 799.6 | | | 10.010 | | 11.598 | 11.203 | 11.753 | -8.204 | 3.37 | 180.83 | 3.17E-15 | -14.499 | | 840 | 799.7 | | | 9.850 | | 11.558 | 11.193 | 11.720 | -8.237 | 3.27 | 192.25 | 2.85E-15 | -14.545 | | 860 | 799.7 | | | 9.690 | | 11.518 | 11.183 | 11.687 | -8.270 | 3,19 | 202.60 | 2.58E-15 | -14.589 | | 880 | 799.7 | | | 9.531 | | 11.478 | 11.173 | 11.656 | -8.301 | 3.11 | 211.86 | 2.34E-15 | -14.631 | | 900 | 799.7 | | | 9.374 | | 11.439 | 11.163 | 11.626 | -8.331 | 3.04 | 220.09 | 2.13E-15 | -14.671 | | 920 | 799.8 | | | 9.217 | | 11.400 | 11.153 | 11,596 | -8.361 | 2.97 | 227.41 | 1.95E-15 | -14.710 | | 940 | 799.8 | | | 9.061 | | 11.360 | 11.143 | 11.568 | -8.389 | 2.91 | 233.97 | 1.79E-15 | -14.748 | | 960 | 799.8 | | | 8.906 | | 11.322 | 11.134 | 11.540 | -R.417 | 2.86 | 239.91 | 1.64E-15 | -14.784 | | 980 | 799.8 | | | 8.751 | | 11.283 | 11.124 | 11.512 | -8.444 | 2.80 | 245.36 | 1.51E-15 | -14.820 | | 1000 | 799.8 | | | 8.598 | | 11.245 | 11.114 | 11.486 | -8.471 | 2.75 | 250.44 | 1.40E-15 | -14.855 | | 1050 | 799.8 | | | 8.218 | | 11.150 | 11.090 | 11.422 | -8.535 | 2.62 | 262.16 | 1.155-15 | -14.940 | | 1100 | 799.9 | | | 7.843 | | 11.056 | 11.067 | 11.362 | -8.595 | 2.49 | 273.41 | 9.53E-16 | -15.021 | | 1150 | 799.9 | | | 7.473 | | 10.963 | 11.043 | 11.306 | -A.651 | 2.37 | 284.91 | 7.96E-16 | -15.099 | | 1200 | 799.9 | | | 7.109 | | 10.872 | 11.020 | 11.253 | -8.703 | 2.25 | 297.06 | 6.71E-16 | -15.173 | | 1250 | 799.9 | | | 6.748 | | 10.782 | 10.998 | 11.204 | -8.753 | 2.14 | 310.28 | 5.69E-16 | -15.245 | | 1300 | 799.9 | | | 6.393 | | 10.693 | 10.975 | 11.158 | -8.799 | 2.04 | 324.72 | 4.86E-16 | -15.313 | | 1350 | 799.9 | | | 6.042 | | 10.605 | 10.953 | 11.114 | -8.843 | 1.94 | 340.52 | 4.18E-16 | -15.379 | | 1400 | 799.9 | | - | | | 10.519 | 10.931 | 11.073 | -8.884 | 1.84 | 357.80 | 3.62E-16 | -15.441 | | 1450 | 799.9 | | | | | 10.433 | 10.910 | 11.035 | -8.922 | 1.76 | 376.75 | 3.16E-16 | -15.500 | | 1500 | 800.0 | | | | | 10.349 | 10.888 | 10,999 | -8.958 | 1,68 | 397.39 | 2.78E-16 | -15,556 | | 1600
1700 | 800.0 | | | | | 10.183 | 10.847 | 10.932 | -9.025 | 1.54 | 443.86
497.51 | 2.19E-16
1.77E-16 | -15.660
-15.752 | | 1800 | 0.008 | | | | |
10.021
9.864 | 10.806
10.766 | 10.472
10.818 | -9.085
-9.139 | 1.43 | 557.67 | 1.46E-16 | -15.835 | | 1900 | 800.0 | | | | | 9.864 | 10.728 | 10.767 | -9.139
-9.189 | | 623.66 | 1.23E-16 | -15,908 | | 2000 | 800.0
800.0 | | | | | 9.710 | 10.728 | 10.787 | -9.109
-9.236 | 1.21 | 693.94 | 1.06E-16 | -15.974 | | 2100 | 800.0 | | | | | 9.413 | 10.653 | 10.721 | -9.280 | 1.17 | 766.66 | 9.25E-17 | -16.034 | | 2200 | 800.0 | | | | | 9.413 | 10.617 | 10.636 | -9.321 | 1.14 | 840.47 | 8.16E-17 | -16.088 | | 2300 | 800.0 | | | | | 9.131 | 10.582 | 10.597 | -9.360 | 1.11 | 913.58 | 7.28E-17 | -16.138 | | 2400 | 800.0 | | | | | 8.994 | 10.547 | 10.559 | ~9.398 | | 984.49 | 6.56E-17 | -16.183 | | 2500 | 800.0 | | | | | 8.860 | 10.514 | 10.523 | -9.434 | | 1052.72 | 5.94E-17 | -16,226 | | 2,000 | 000.0 | | | | | ~ 2000 | | | ~79727 | | | | | | HEIGHT
KM | TEMP
K | LOG (N (N2)
/M3) | LOG(N(O2)
/M3) | LGG(N(O)
/M3) | LOG (N (A)
/M3) | LOG (N (HE)
/M3) | LOG (N (H)
/M3) | LOG(N
/N3) | LOG
(PRESSURE
NT/M2) | MEAN
MOL WT | DENSITY
SCALE HT
KM | DENSITY
KG/M3 | LOG(DEN
KG/M3) | |--------------|-----------|---------------------|-------------------|------------------|--------------------|---------------------|--------------------|---------------|----------------------------|----------------|---------------------------|------------------|-------------------| | 90 | 188.0 | 19.746 | 19.170 | 17.390 | 17.824 | 14.573 | | 19.854 | 732 | 28.91 | 5.63 | 3.43E-06 | -5,465 | | 92 | 188.1 | 19.592 | 19,009 | 17.547 | 17,669 | 14.418 | | 19.700 | m.886 | 28.85 | 5.59 | 2.40E-06 | -5.620 | | 94 | 188.5 | 19.437 | 18.843 | 17.646 | 17,515 | 14.263 | | 19.545 | -1.040 | 28.76 | 5.55 | 1.68E-06 | -5.776 | | 96 | 189.3 | 19.281 | 18,673 | 17.686 | 17.359 | 14.108 | | 19,390 | -1.193 | 28.65 | 5.53 | 1.17E-06 | -5,933 | | 98 | 190.8 | | 18.499 | 17.688 | 17.204 | 13.953 | | 19.235 | -1.344 | 28.52 | 5.54 | 8.13E-07 | -6.090 | | 100 | 193.3 | 18.972 | 18,324 | 17.666 | 17.049 | 13.798 | | 19.081 | -1.493 | 28,36 | 5.63 | 5.67E-07 | -6.246 | | 102 | 197.3 | | 18,150 | 17,601 | 16.837 | 13.773 | | 18.929 | -1.636 | 28.21 | 5.63 | 3.98E-07 | -6.400 | | 104 | 203.2 | 18,668 | 17.973 | 17,544 | 16.626 | 13.745 | | 18.778 | -1.774 | 28.02 | 5.64 | 2.79E-07 | -6,555 | | 106 | 211.8 | 18.517 | 17.792 | 17.488 | 16.417 | 13.714 | | 18.627 | -1.907 | 27.80 | 5.66 | 1.96E-07 | -6.708 | | 108 | 223.4 | 18.366 | 17.608 | 17.429 | 16.212 | 13.682 | | 18.479 | -2.032 | 27.54 | 5.72 | 1.38E-07 | -6.861 | | 110 | 238.3 | | 17,420 | 17.363 | 16.012 | 13.647 | | 18.333 | -2.150 | 27.27 | 5.88 | 9.75E-08 | -7.011 | | 115 | 286.6 | | 16.981 | 17.177 | 15.553 | 13.560 | | 17.997 | -2.406 | 26.62 | 6.82 | 4.39E-08 | -7.357 | | 120 | 340.3 | | 16.632 | 16,989 | 15.163 | 13.482 | | 17.714 | -2.614 | 26.11 | 8.16 | 2.25E-08 | -7.648 | | 125 | 395.9 | | 16.347 | 16,818 | 14.829 | 13.414 | | 17.475 | -2.787 | 25.69 | 9.50 | 1.27E-08 | -7.895 | | 130 | 451.8 | | 16.103 | 16.668 | 14.540 | 13,355 | | 17.269 | -2.936 | 25.29 | 11.02 | 7.81E-09 | -8.107 | | 135 | 504.9 | | 15.890 | 16,538 | 14.286 | 13.305 | | 17.092 | -3.065 | 24.93 | 12.67 | 5.12E-09 | -8.291 | | 140 | 553.2 | | 15.702 | 16.424 | 14.061 | 13.262 | | 16.938 | -3.179 | 24.57 | 14.41 | 3.53E-09 | -8.452 | | 145 | 595.8 | | 15.533 | 16.323 | 13.859 | 13.225 | | 16.801 | -3.284 | 24.24 | 16.15 | 2.55E-09 | -8.594 | | 150 | 632.7 | | 15.380 | 16.234 | 13.673 | 13.193 | 11.877 | 16.679 | +3+379 | 23.91 | 17.86 | 1.90E-09 | -8.722 | | 155 | 664.2 | | 15,238 | 16.152 | 13.502 | 13.164 | 11.818 | 16.569 | -3.469 | 23.60 | 19.48 | 1.45E-09 | -8.838 | | 160 | 691.1 | | 15,106 | 16.077 | 13.341 | 13.139 | 11.768 | 16,467 | -3.553 | 23,29 | 20.99 | 1.13E-09 | -8.945 | | 170 | 734.0 | | 14.861 | 15.942 | 13.042 | 13.096 | 11.686 | 16.284 | -3.710 | 22.69 | 23.71 | 7.25E-10 | -9.140 | | 180 | 766.1 | | 14.636 | 15,820 | 12.766 | 13.058 | 11.623 | 16.121 | -3.855 | 22.12 | 26.06 | 4.85E-10 | -9.314 | | 190 | 790.5 | | 14,424 | 15.707 | 12,504 | 13.025 | 11.573 | 15.972 | -3.990 | 21,57 | 28.14 | 3.35E-10 | -9.474 | | 200 | 809.5 | | 14.221 | 15.600 | 12.253 | 12.995 | 11.522 | 15.833 | -4.119 | 21.04 | 30.02 | 2.38E-10 | -9.624 | | 210 | 824.6 | | 14.024 | 15.498 | 12.010 | 12.966 | 11.488 | 15.703 | -4.241 | 20.55 | 31.73 | 1.72E-10 | -9.764 | | 220 | 836.6 | | 13.833 | 15.400 | 11.773 | 12.939 | 11.460 | 15.579 | -4.358 | 20.08 | 33.35 | 1.27E-10 | -9.898 | | 230 | 846.4 | | 13.647 | 15,304 | 11.541 | 12.913 | 11.437 | 15.461 | -4.471 | 19.65 | 34.87 | 9.44E-11 | -10.025 | | 240 | 854.4 | | 13.463 | 15.210 | 11.313 | 12.888 | 11.417 | 15.348 | -4.580 | 19.24 | 36.32 | 7.13E-11 | -10,147 | | 250 | 860.9 | 14,598 | 13,283 | 15.118 | 11.089 | 12.864 | 11.400 | 15.240 | -4.685 | 18.87 | 37.71 | 5.44E-11 | -10.264 | | 260 | 866.4 | | 13,105 | 15.028 | 10.867 | 12.840 | 11.385 | 15.134 | -4.788 | 18.52 | 39.04 | 4.19E-11 | -10.378 | | 270 | 870.9 | 14.287 | 12.929 | 14,939 | 10.648 | 12.817 | 11.372 | 15.032 | -4.888 | 18.21 | 40.30 | 3.26E-11 | -10,487 | | 280 | 874.7 | | 12.754 | 14.850 | 10.430 | 12.794 | 11.360 | 14.933 | -4.985 | 17.92 | 41.51 | 2.55E-11 | -10,593 | | 290 | 877.9 | | 12.581 | 14.763 | 10.215 | 12.772 | 11.350 | 14.836 | -5.080 | 17.66 | 42.65 | 2.01E-11 | ~10,697 | | 300 | 880.6 | | 12.410 | 14.677 | 10.001 | 12.750 | 11.340 | 14.742 | -5.174 | 17.43 | 43.73 | 1.60E-11 | -10.797 | | 310 | 882.9 | | 12.239 | 14.591 | 9.789 | 12.728 | 11.331 | 14.649 | -5.265 | 17.21 | 44.76 | 1.27E-11 | -10.895 | | 320 | 884.9 | | 12.070 | 14.506 | 9.578 | 12.706 | 11.323 | 14.558 | -5.355 | 17.01 | 45.72 | 1.02E-11 | -10.991 | | 330 | 886.6 | | 11.902 | 14.421 | 9.368 | 12.685 | 11.315 | 14.468 | -5.444 | 16.83 | 46.62 | 8.22E-12 | -11.085 | | 340 | 888.0 | | 11,734 | 14.337 | 9.159 | 12.664 | 11.308 | 14.380 | -5.531 | 16.66 | 47.47 | 6.64E-12 | -11.178 | | 350 | 889.3 | 13.095 | 11.568 | 14.254 | 8.951 | 12.642 | 11.301 | 14.294 | -5.617 | 16.51 | 48.26 | 5.39E-12 | -11.268 | | 360 | 890.4 | | 11.402 | 14.170 | 8.744 | 12.621 | 11.295 | 14.208 | -5.702 | 16.36 | 49.00 | 4.39E-12 | -11.358 | | 370 | 891.3 | | 11,237 | 14.088 | 8,538 | 12.601 | 11.288 | 14.124 | -5.786 | 16.22 | 49.69 | 3.58E-12 | -11.446 | | 380 | 892.2 | | 11.073 | 14.005 | 8.333 | 12.580 | 11.282 | 14.041 | -5.868 | 16.08 | 50.34 | 2.93E-12 | -11.532 | | 390 | 892.9 | | 10,909 | 13.923 | 8.129 | 12.559 | 11.276 | 13.959 | -5.950 | 15.94 | 50.95 | 2.41E-12 | -11,618 | | 400 | 893.6 | 12.375 | 10.746 | 13.842 | 7.926 | 12.539 | 11.270 | 13.878 | -6.031 | 15.80 | 51.53 | 1.98E-12 | -11.703 | EXOSPHERIC TEMPERATURE = 900 K | L06 (DEN
KG/M3) | | =13.361
=13.606
=13.606
=13.824
=13.922
=14.012 | | 1155.6331
1155.6331
1155.6331
1156.9825
1166.049 | |----------------------------|---|---
---|--| | DENSITY
KG/M3 | 2.00 | 3.00 S S S S S S S S S S S S S S S S S S | 8 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2.94E-16
1.84E-16
1.49E-16
1.04E-16
1.04E-16
8.94E-17
7.76E-17 | | DENSITY
SCALE HT
KM | 00000000000000000000000000000000000000 | 67.41
70.72
74.75
79.66
85.57
92.60
100.82
110.91 | 1158.06
11711.13
11711.13
1186.02
1186.02
1186.02
1186.02
128.00
128.00
128.00
128.00
128.00
128.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00
139.00 | 391.70
425.00
463.45
507.74
613.96
615.68
742.44
813.20 | | MEAN WOL WT | 112
122
133
134
135
135
135
135
135
135
135
135
135
135 | 0 0 0 0 0 0 0 0 0 4 4 6 6 6 6 6 6 6 6 6 | 44 mamamama au 07070707070707070707070707070707070707 | 11 1 2 2 5 0 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 | | LOG
(PRESSURE
NT/M2) | # 66 . 34 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 | -7,470
-7,557
-7,636
-7,707
-7,771
-7,882
-7,931
-7,931 | ### ### ### ### #### ################# | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | LOG (N | 13.00 | 12.436
12.349
12.349
12.199
12.135
12.077
11.9975
11.888 | 11.849
11.743
11.743
11.743
11.619
11.659
11.659
11.659
11.650
11.259
11.259
11.259
11.259
11.259
11.259 | 10,935
10,864
10,860
10,742
10,690
10,597
10,556
10,517
10,517 | | LOG(N(H) | 11,259
11,248
11,237
11,227
11,226
11,206
11,196
11,196
11,196 | 11.157
11.198
11.138
11.129
11.110
11.101
11.001 | 11,064
11,055
11,055
11,002
11,002
11,002
10,993
10,964
10,963
10,968
10,968
10,861
10,861
10,861
10,861
10,861 | 10.747
10.711
10.676
10.661
10.575
10.575
10.511
10.481 | | LOG (N(HE)
/M3) | 12.498
12.417
12.417
12.337
12.299
12.221
12.221
12.182 | 12.106
12.068
12.088
11.993
11.956
11.956
11.868
11.866 | 11. 738
11. 538
11. 667
11. 667
11. 653
11. 554
11. 458
11. 254
11. 256
11. 092
11. 012
10. 933
10. 778 |
10.480
10.336
10.336
10.196
9.966
9.569
9.569
9.423 | | LOG (N (A)
/M3) | 7.521
7.120
6.120
6.325 | | | | | LOG(N(O) | 13.679
13.518
13.518
13.000
12.700
12.730
12.573
12.651 | 12.116
11.965
11.815
11.666
11.517
11.370
11.022
11.022 | 100
100
100
100
100
100
100
100
100
100 | | | LOG (N (O2)
/M3) | 10.422
10.100
9.781
9.463
9.148
8.524
8.514
7.907 | 7.297
6.995
6.695
6.397
6.100 | | | | , LOG(N(N2) | 12.091
11.810
11.530
11.252
10.976
10.429
10.158
9.889 | 9.356
9.091
8.091
8.567
7.77
7.792
7.283 | 6.780
6.282
6.282
6.282 | | | TEMP L | 88999999999999999999999999999999999999 | 88 98 88 98 98 98 98 98 98 98 98 98 98 9 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 60006666666666666666666666666666666666 | | HE I GHT
KM | 4444 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 620
640
680
700
720
740
740
780 | 820
840
860
980
920
940
940
940
1000
1000
1150
1250
1250
1350
1450 | 1600
1700
1800
1900
2000
2100
2200
2200
2400
2500 | FXOSPHERIC TEMPERATURE = 1000 K | LOG (DEN
KG/M3) | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 16.01 | 111111
3000000000
3111111
0000000000
0000000000 | 110,0938 | | |----------------------------|---|--|----------------------------|--|--|----------------------------| | DENSITY
KG/M3 | 3,43E-06
1,67E-06
11.17E-06
8,13E-07
3,67E-07 | 1.995
4.326
4.326
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1.2266
1 | | 1,21E.09
7,84E.10
5,34E.10
3,76E.10
2,72E.10
2,00E.10
1,50E.10 | | | | DENSITY
SCALE HT
KM | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | | | 21.67
24.65
27.34
29.69
31.81
35.71
37.16 | | ຄູ່ຄູ | | MOL WI | 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | ~~ | 446 | 23.48
22.93
22.93
21.89
21.40
20.94
20.50 | dw | 16,31 | | LGG
(PRESSURE
NT/M2) | | # | 13.44 | 11111111111111111111111111111111111111 | 44 44/46/00/00/00/00/00/00/00/00/00/00/00/00/00 | 72 | | L06(N | 199.545
199.545
199.545
199.545
199.535
199.535 | | 16.698
16.698
16.590 | 16.491
16.314
16.157
16.015
15.883
15.460
15.644 | 22 22 44 67 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 14.714
14.138
14.064 | | L0G(N(H) | | | 11,756 | 11.646
11.563
11.448
11.446
11.392
11.357 | <i>nn nnnn</i> | 11,135 | | LOG (N (HE)
/M3) | 14.573
14.418
14.263
14.108
13.953
13.772 | 13,713
13,644
13,654
13,476
13,408
13,208
13,208 | . 18
. 18 | 13,130
13,087
13,087
13,050
13,017
12,987
12,960
12,935 | | 12.587
12.587
12.568 | | L06(N(A)
/M3) | 17.0569
17.0569
17.0569
17.0569
17.0509
17.069 | 16.0013
15.0013
15.0013
15.0013
14.0013
14.0013 | | 13.401
13.118
12.857
12.613
12.381
12.157
11.939 | | 8 8 6 3 8
8 4 5 5 | | LCG(N(0)
/M3) | 17.547
17.646
17.6646
17.6687
17.6687
17.6665 | 44 WH 98 9 7 4 6 6 7 4 6 6 7 6 7 6 7 6 7 6 7 6 7 6 | 23. | 16.085
15.953
15.836
15.729
15.629
15.534
15.934 | | 14.174
14.100
14.027 | | LOG (N (O2) | 19.170
19.009
18.843
18.643
18.499
18.323 | 20 400 m o c i | 15,561
15,412
15,276 | 15,148
14,916
14,703
14,504
14,315
14,134
13,959 | 13.620
13.620
13.133
12.975
12.975
12.509
12.509
12.009
11.753 | 11,456
11,308
11,161 | | TENP LOG(N(N2) I | 19,746
19,592
19,593
19,281
19,128
19,128
18,971 | 8 8 35 1 36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6.61
6.47
6.35 | 16,240
16,032
15,843
15,667
15,561
15,341
15,186 | 44 44444666666666666666666666666666666 | 12.991
12.862
12.733 | | TEMP L | 1888
1888
1888
1989
1910
1910
1930
1930
1930
1930
1930
193 | 25 25 25 25 25 25 25 25 25 25 25 25 25 2 | 27.
69.
06. | 738.5
790.4
829.9
860.4
884.4
903.5 | 64 44 44 44 44 44 44 44 44 44 44 44 44 4 | 990.0
990.9
991.7 | | HE I GHT
KM | 100
100
100
100
100
100
100
100
100
100 | 106
108
1110
1125
1125
1130
1135 | 4 ru ru | 1140
1180
1190
220
230 | 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 980
980
400
400 | | | | | | | | | | | L0G | MFAN | DENSITY | | | |----------|--------|-----------|-------------|----------|-----------|-------------|----------|---------|-----------------|-------|----------|------------|----------|
 HF I GHT | TEMP | LOGININAL | LOG (N (02) | 106(N(0) | LOG (N(A) | LOG (N (HE) | LOGINIHI | LOGIN | (PRFSSURE | | SCALE HT | DENSITY | LOG (DEN | | KM | K | /M3) NT/M2) | | KM | KG/M3 | KG/M3) | | •;•• | | / 112 / | ,,,,, | ,,,,,,, | | , 113, | ,, | , 11157 | 14171727 | | MI | 1107 113 | | | | | | | | | | | | | | | | | | 420 | 993.1 | 12,477 | 10.869 | 13.880 | 8.091 | 12.531 | 11.118 | 13.917 | -5-946 | 15.93 | 57.20 | 2.18E-12 | -11,661 | | 440 | 994.2 | 12,223 | 10,579 | 13,735 | 7.729 | 12,495 | 11,108 | 13,773 | -6.089 | 15.68 | 58.37 | 1.54E-12 | 11.811 | | 460 | 995.1 | | 10,291 | 13,591 | 7.369 | 12,459 | 11.098 | 13,633 | -6.229 | 15.42 | 59.46 | 1.10E-12 | -11,959 | | 480 | 995.8 | | 10,005 | 13,448 | 7.013 | 12.423 | 11.089 | 13.496 | -6.365 | 15.13 | 60.50 | 7.88E-13 | -12,103 | | 500 | 996.4 | | 9.722 | 13,306 | 6.658 | 12.387 | 11.079 | 13.363 | -6.498 | 14.81 | 61.52 | 5.68E-13 | -12.246 | | 520 | 996.9 | | 9.439 | 13.165 | 6.306 | 12.352 | 11.070 | 13.234 | -6.627 | 14.44 | 62.56 | 4.11E-13 | -12.386 | | 540 | 997.3 | | 9.159 | 13.025 | | 12.317 | 11.061 | 13.110 | -6.752 | 14.02 | 63.65 | 3.00E-13 | -12,523 | | 560 | 997.6 | | 8.881 | 12,885 | | 12.282 | 11.052 | 12.989 | -6.872 | 13.54 | 64.82 | 2.19E-13 | -12,659 | | 580 | 997.9 | | 8.604 | 12.747 | | 12.247 | 11.043 | 12.874 | -6.986 | 13.00 | 66.13 | 1.62E-13 | -12.791 | | 600 | 998.2 | | 8.329 | 12,609 | | 12.213 | 11,034 | 12.765 | -7.096 | 12.40 | 67.63 | 1.20E-13 | -12,921 | | 000 | 970.2 | 10.233 | 0.329 | 12,009 | | 12.213 | 11,034 | 12.707 | #14030 | 12,40 | 01.00 | 1,200013 | | | 620 | 998.4 | 10.013 | 8,055 | 12,472 | | 12.178 | 11.025 | 12.662 | -7.199 | 11.74 | 69.35 | 8.95E-14 | -13,048 | | 640 | 998.5 | 9.775 | 7.783 | 12,336 | | 12.144 | 11.017 | 12,565 | -7.295 | 11.04 | 71.38 | 6.74E-14 . | -13,172 | | 660 | 998.7 | | 7,513 | 12,201 | | 12,110 | 11.008 | 12.475 | -7.386 | 10.32 | 73.77 | 5.11E-14 | -13,291 | | 680 | 998.8 | | 7.244 | 12.067 | | 12.077 | 11.000 | 12.391 | -7.469 | 9.59 | 76.63 | 3.92E-14 | -13.407 | | 700 | 998.9 | | 6,977 | 11,933 | | 12.043 | 10,991 | 12.314 | -7.546 | 8.86 | 80.02 | 3.03E-14 | -13,518 | | 720 | 999.0 | | 6.712 | 11,800 | | 12.010 | 10.983 | 12.744 | -7.617 | 8.17 | 84.07 | 2.38E-14 | -13,624 | | 740 | 999.1 | | 6,448 | 11,668 | | 11.977 | 10.974 | 12,179 | -7.682 | 7.53 | 88.87 | 1.89E-14 | -13.724 | | 760 | 999.2 | | 6.185 | 11,537 | | 11.944 | 10.966 | 12,119 | -7.741 | 6.94 | 94.52 | 1.52E-14 | -13.819 | | 780 | 999.3 | | 0,.05 | 11,407 | | 11.911 | 10.958 | 12.065 | -7.795 | 6.41 | 101.12 | 1.24E-14 | -13,908 | | 800 | 999.3 | | | 11,277 | | 11.879 | 10.950 | 12.015 | -7.845 | 5.94 | 108.75 | 1.02E-14 | -13,991 | | ••• | 37762 | | | | | 114019 | 20093 | 12.013 | 41,043 | 2477 | | .,02 | -13,,,, | | 820 | 999.4 | 7.694 | | 11,148 | | 11.847 | 10,941 | 11,969 | -7.891 | 5.53 | 117.43 | 8.55E-15 | -14.068 | | 840 | 999.4 | 7.470 | | 11,019 | | 11.815 | 10.933 | 11,926 | -7.934 | 5.19 | 127.16 | 7.26E-15 | -14,139 | | 860 | 999.5 | | | 10.892 | | 11.783 | 10,925 | 11.886 | -7.975 | 4.89 | 137.89 | 6.24E-15 | -14,205 | | 880 | 999.5 | | | 10.765 | | 11.751 | 10.917 | 11.848 | -8.012 | 4.64 | 149.50 | 5.43E-15 | -14,265 | | 900 | 999.6 | | | 10.639 | | 11.719 | 10,909 | 11.812 | -8.048 | 4.43 | 161.80 | 4.77E-15 | -14,321 | | 920 | 999.6 | | | 10,513 | | 11.688 | 10.901 | 11.778 | -8.082 | 4.26 | 174.56 | 4.24E-15 | -14.373 | | 940 | 999.6 | | | 10.388 | | 11.657 | 10.894 | 11.745 | -8.115 | 4.11 | 187.53 | 3.80E-15 | -14,421 | | 960 | 999.6 | | | 10.264 | | 11.626 | 10.886 | 11.714 | -8.146 | 3.98 | 200.42 | 3.42E-15 | -14.466 | | 980 | 999.7 | | | 10.141 | | 11.595 | 10.878 | 11.684 | -8.176 | 3.88 | 213.01 | 3.11E-15 | -14.508 | | 1000 | 999.7 | | | 10.018 | | 11.564 | 10.870 | 11.654 | -8.206 | 3.79 | 225.07 | 2.84E-15 | -14.547 | | | | | | | | 11,504 | | •••• | -50220 | 3.1. | | | | | 1050 | 999.7 | , | | 9.714 | | 11.488 | 10.851 | 11.584 | -8.276 | 3.61 | 252.00 | 2.30E-15 | -14.638 | | 1100 | 999.8 | } | | 9.414 | | 11.413 | 10.832 | 11.518 | -8.342 | 3.48 | 273.85 | 1.90E-15 | -14.721 | | 1150 | 999.8 | 1 | | 9.118 | | 11.339 | 10.813 | 11.454 | -8.406 | 3.37 | 291.09 | 1.59E-15 | -14.797 | | 1200 | 999.8 | 1 | | 8.826 | | 11.266 | 10.795 | 11.394 | -8.466 | 3.28 | 304.82 | 1.35E-15 | -14.870 | | 1250 | 999.9 |) | | 8.538 | | 11.194 | 10.777 | 11.335 | -8.525 | 3.19 | 316.29 | 1.15E-15 | -14.940 | | 1300 | 999.9 |) | | 8.254 | | 11.123 | 10.759 | 11.279 | -8.581 | 3.11 | 326.39 | 9.82E-16 | -15,008 | | 1350 | 999.9 | | | 7,973 | | 11.052 | 10.741 | 11.225 | -8.635 | 3.03 | 335.74 | 8.45E-16 | -15.073 | | 1400 | 999.9 | | | 7.696 | | 10.983 | 10.724 | 11.174 | -8.686 | 2.94 | 344.79 | 7.29E-16 | -15.137 | | 1450 | 999.9 | | | 7.423 | | 10.915 | 10.706 | 11.124 | -8.736 | 2.86 | 353.92 | 6.32E-16 | -15,199 | | 1500 | 999.9 | | | 7,153 | | 10.847 | 10.689 | 11.077 | -8.783 | 2.78 | 363.29 | 5.50E-16 | -15,260 | | | | | | | | | | | | | | | | | 1600 | 999.9 | | | 6.623 | | 10.715 | 10.656 | 10.987 | -8.873 | 2.61 | 383.21 | 4.20E-16 | -15.376 | | 1700 | 999.9 | | | 6.106 | | 10.585 | 10.623 | 10.906 | -8.954 | 2.44 | 405.55 | 3.26E-16 | -15.487 | | 1800 | 1000.0 | | | | | 10.459 | 10.592 | 10.832 | -9.028 | 2.28 | 430.68 | 2.57E-16 | -15.590 | | 1900 | 1000.0 | | | | | 10.336 | 10.561 | 10.764 | -9.096 | 2.13 | 459.34 | 2.05E-16 | -15.688 | | 2000 | 1000.0 | | | | | 10.216 | 10.530 | 10.702 | -9. 158 | 1.99 | 491.85 | 1.66E-16 | -15.780 | | 2100 | 1000.0 | | | | | 10.099 | 10.501 | 10.646 | -9.214 | 1.86 | 528.47 | 1.37E-16 | -15.865 | | 2200 | 1000.0 | | | | | 9.984 | 10.472 | 10.594 | -9.266 | 1.74 | 569,81 | 1.14E-16 | -15.944 | | 2300 | 1000.0 | | | | | 9.873 | 10.444 | 10.547 | -9.313 | 1.64 | 615.98 | 9.61E-17 | -16.017 | | 2400 | 1000.0 | | | | | 9.763 | 10,416 | 10.504 | ~9 • 356 | 1.55 | 667.00 | 8.22E-17 | -16.085 | | 2500 | 1000.0 | • | | | | 9.656 | 10.390 | 10.463 | -9.397 | 1.48 | 723.19 | 7.12E-17 | -16,148 | | | | | | | | | | | | | | | | | HEIGHT
KM | TEMP
K | LOG (N (N2)
/M3) | LOG(N(02)
/M3) | LOG(N(O)
/M3) | LOG(N(A)
/M3) | LOG (N(HE)
/M3) | LOG (N (H)
/M3) | LOG(N
/N3) | LOG
(PRESSURE
NT/M2) | MEAN
MOL WT | DENSITY
SCALE HT
KM | DENSITY
KG/M3 | LOG(DEN
KG/M3) | |--------------|----------------|---------------------|-------------------|------------------|------------------|--------------------|--------------------|------------------|----------------------------|----------------|---------------------------|------------------|-------------------| | 90 | 188.0 | 19:746 | 19,170 | 17.390 | 17.824 | 14.573 | | 19.854 | 732 | 28.91 | 5.63 | 3.43E-06 | -5.465 | | 92 | 188.1 | 19,592 | 19,009 | 17,547 | 17.669 | 14.418 | | 19.700 | 886 | 28.85 | 5.58 | 2.40E-06 | -5.620 | | 94 | 188.5 | 19.437 | 18.843 | 17.646 | 17.514 | 14.263 | | 19.545 | -1.040 | 28.76 | 5.55 | 1.67E-06 | -5.776 | | 96 | 189.5 | 19.281 | 18.672 | 17.686 | 17.359 | 14.108 | | 19.390 | -1.193 | 28,65 | 5.53 | 1.17E-06 | -5.933 | | 98 | 191.2 | 19,126 | 18.499 | 17.687 | 17.204 | 13.953 | | 19.235 | -1.344 | 28.52 | 5.53 | 8.12E-07 | -6.090 | | 100 | 194.0 | 18,971 | 18.323 | 17,665 | 17.049 | 13.798 | | 19.080 | -1.492 | 28.36 | 5.62 | 5.66E-07 | -6.247 | | 102 | 198.5 | 18.819 | 18.149 | 17.599 | 16.836 | 13.771 | | 18.928 | -1.634 | 28.21 | 5.61 | 3.97E-07 | -6.402 | | 104 | 205.2 | 18,667 | 17.971 | 17.542 | 16.625 | 13.743 | | 18,776 | -1.772 | 28.02 | 5.62 | 2.78E-07 | -6.556 | | 106 | 214.8 | 18.514 | 17.791 | 17,485 | 16.417 | 13.711 | | 18,625 | -1.903 | 27.80 | 5.65 | 1.95E-07 | -6.711 | | 108 | 227.9 | 18.363 | 17.606 | 17.424 | 16.212 | 13.677 | | 18.476 | -2.026 | 27.55 | 5.71 | 1.37E-07 | -6.864 | | 110 | 244.7 | 18.215 | 17.419 | 17.357 | 16.013 | 13.641 | | 18.330 | -2.141 | 27,28 | 5.88 | 9.69E-08 | -7.014 | | 115
120 | 299.1 | 17.871 | 16.983 | 17.169 | 15.560 | 13.551 | | 17.996 | -2.389 | 26.65 | 6.89 | 4.38E-08 | -7.358 | | 125 | 359.6
422.2 | 17.580
17.333 | 16.640 | 16.982 | 15,179 | 13.471 | | 17.717 | -2.587 | 26.17 | 8.34 | 2.27E-08 | -7.645 | | 130 | 485.4 | 17.120 | 16.364 | 16,813 | 14.857 | 13.402 | | 17.483 | -2.751 | 25.77 | 9.78 | 1.30E-0B | -7.885 | | 135 | 546.5 | 16,935 | 16.129
15.925 | 16,666
16,538 | 14.580
14.338 | 13.343 | | 17.284 | -2.890 | 25.42 | 11.39 | 8.11E-09 | -8.091 | | 140 | 603.8 | 16,773 | 15.745 | 16,427 | 14.124 | 13.292
13.248 | | 17.112 | -3.011 | 25.08 | 13.12 | 5.39E-09 | -8.269 | | 145 | 656.1 | 16.628 | 15.584 | 16.328 | 13.932 | 13.210 | | 16.962
16.830 | -3.117 | 24.77 | 14.93 | 3.77E-09 | -8.424 | | 150 | 703.2 | 16.497 | 15.439 | 16.241 | 13.759 | 13.177 | 11.650 | 16.713 | -3.213 | 24.47 | 16.78 | 2.75E-09 | -8.561 | | 155 | 745.0 | 16.377 | 15.306 | 16,162 | 13.599 | 13.148 | 11.591 | 16.607 | -3.300 | 24.18 | 18.64 | 2.07E-09 | -8.684 | | | | | 13,300 | _ | , | 13.140 | * * * 5 7 1 | 10.001 | -3.381 | 23,90 | 20.46 | 1.60E-09 | -8.795 | | 160 | 781.8 | 16.267 | 15.183 | 16,090 | 13.450 | 13.122 | 11.540 | 16.510 | -3.457 | 23.64 | 22.22 | 1.27E-09 | -8.897 | | 170 | 842.8 | 16.066 | 14.959 | 15.961 | 13.179 | 13.078 | 11.455 | 16.337 | -3.597 | 23.12 | 25.50 | 8.34E-10 | -9.079 | | 180 | 890.0 | 15.886 | 14.756 | 15.848 | 12,931 | 13.041 | 11.389 | 16.185 | -3.725 | 22.63 | 28.43 | 5.76E-10 | -9.240 | | 190 | 927.1 | 15.719 | 14.568 | 15,745 | 12.701 | 13.009 | 11.335 | 16.049 | -3.844 | 22.16 | 31.05 | 4.11E-10 | -9.386 | | 200 | 956.4 | 15.562 | 14.391 | 15.650 | 12.483 | 12.980 | 11.280 | 15,923 | ~3.95 6 | 21.70 | 33.43 | 3.02E-10 | -9.520 | | 210
220 | 979.9 | 15.413 | 14,222 | 15.560 | 12.274 | 12.954 | 11.243 | 15.806 | -4.063 | 21,27 | 35.54 | 2.26E-10 | -9.646 | | 230 | 998.9 | 15.269 | 14.058 | 15.474 | 12,073 | 12.929 | 11.212 | 15.695 | -4.165 | 20.85 | 37.51 | 1.72E-10 | -9.765 | | 240 | 1014.3 | 15.129 | 13,900 | 15.391 | 11.876 | 12.906 | 11.185 | 15.591 | -4.263 | 20.45 | 39.34 | 1.32E-10 | -9.878 | | 250 | | 14.993 |
13.745 | 15.311 | 11.685 | 12.884 | 11.163 | 15.491 | -4.358 | 20.08 | 41.07 | 1.03E-10 | -9.986 | | 230 | 1037.4 | 14.860 | 13,593 | 15,233 | 11.496 | 12.863 | 11.144 | 15.395 | -4.449 | 19.72 | 42.69 | 8.13E-11 | -10,090 | | 260 | 1046.1 | 14.729 | 13,444 | 15,157 | 11.311 | 12.842 | 11.127 | 15,302 | -4.538 | 19.39 | 44.24 | 6.46E-11 | -10.190 | | 270 | 1053.4 | 14.600 | 13.298 | 15.082 | 11.129 | 12.822 | 11.112 | 15.213 | -4.624 | 19.07 | 45.71 | 5.175-11 | -10.286 | | 280 | 1059.4 | 14.473 | 13.152 | 15,008 | 10.948 | 12.803 | 11.099 | 15,126 | -4.709 | 18.78 | 47.13 | 4.17E-11 | -10.380 | | 290 | 1064.5 | 14.347 | 13,009 | 14.936 | 10,770 | 12.784 | 11.087 | 15.042 | -4.791 | 18.51 | 48.49 | 3.38E-11 | -10.471 | | 300 | 1068.9 | 14,222 | 12.867 | 14.864 | 10,593 | 12.765 | 11.077 | 14.959 | -4.872 | 18,25 | 49.79 | 2.76E-11 | -10,559 | | 310 | 1072.6 | 14.099 | 12.726 | 14.792 | 10.417 | 12.747 | 11.067 | 14.879 | -4.951 | 18.01 | 51.04 | 2.26E-11 | -10,645 | | 320 | 1075.7 | 13,976 | 12,586 | 14.722 | 10.243 | 12.729 | 11.058 | 14.800 | -5.028 | 17.79 | 52.23 | 1.86E-11 | -10.729 | | 330 | 1078.4 | 13.854 | 12.447 | 14,652 | 10.070 | 12.711 | 11.050 | 14.723 | -5.104 | 17.59 | 53.38 | 1.54E-11 | -10.812 | | 340 | 1080.8 | 13.734 | 12.309 | 14.582 | 9.898 | 12.693 | 11.043 | 14.647 | -5.179 | 17.40 | 54.47 | 1.28E-11 | -10.892 | | 350 | 1082.8 | 13,613 | 12.172 | 14.514 | 9.727 | 12.676 | 11.036 | 14,572 | -5.253 | 17.23 | 55.52 | 1.07E-11 | -10.971 | | 360 | 1084.6 | 13.494 | 12.036 | 14.445 | 9.557 | 12.658 | 11.029 | 14.499 | -5.326 | 17.06 | 56.51 | 8.94E-12 | -11.049 | | 370 | 1086.1 | 13.375 | 11,900 | 14.377 | 9.388 | 12.641 | 11.023 | 14.427 | -5.397 | 16.91 | | 7.50E-12 | -11.125 | | 380 | 1087.5 | 13.257 | 11.765 | 14,309 | 9.219 | 12.624 | 11.017 | 14.355 | -5.468 | 16.77 | | 6.31E-12 | -11.200 | | 390 | 1088.6 | 13.139 | 11.631 | 14,242 | 9.051 | 12.607 | 11.011 | 14.285 | ~5.538 | 16.63 | | 5.32E-12 | -11.274 | | 400 | 1089.7 | 13.022 | 11.497 | 14.174 | 8.884 | 12.590 | 11.006 | 14.216 | -5.607 | 16.51 | 60.03 | 4.505-12 | -11,347 | œ EXOSPHERIC TEMPERATURE = 1100 K | LOG (DEN
KG/M3) | -11.489 | 206 | 2 | 2.16 | 7.7 | 2.53 | 2.66 | 2.78 | 2 | 3.0 | 12 | 2,4 | • | 7 | 3.63 | 3,72 | 3.81 | 3.89 | ď. | * · | • • | 4.23 | 4.28 | -14,335 | 200 | 14.48 | 14.5 | 14.65 | 14.80 | 14.86 | -14.932 | 6.41 | 10,01 | 17.61 | 5.2 | 5,33 | 5.43 | ָ
֓֞֝֝֝֓֞֝֝֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֡֓֡֓֡֓֓֓֡֓֡֓֡֓֡ | 5,71 | 8 | 5.88 | -15,956 | 70.0 | | |-----------------------------|---|----------------|-------|-------|-------|-------|-------|--------|--------|--------|----------|----------|--|-------|-------|--------|--------|--------|------|------------|---------|-------|---------|----------|---------------|-------|------|-------|--------|-------|----------|--------|--|--------|--------|-------|-------|---|-------|-------|-------|----------|----------|---| | DENSITY
KG/M3 | 3.24E.12
2.35E.12 | 26E-1 | 30E-1 | 90E-1 | 85E.1 | 89E-1 | 19E-1 | .66E-1 | .27E-1 | .73E-1 | 7.51E-14 | 845.4 | 6.7 E-1 | R7E.1 | 31E-1 | 87E.1 | .54E-1 | .27E-1 | 07E1 | . Ubr. 1 | 72E-1 | 88E-1 | . 19E-1 | 4.62E-15 | 155. | 26E-1 | 64E1 | 195. | 57E.1 | 35E-1 | 1.17E-15 | 015 | 2 to 12 1 | 1 25. | .96E-1 | 65E-1 | 675-1 | 24F | 92E-1 | 58E-1 | 32E-1 | 1.11E-16 | 100 | | | DENSITY
SCALE HT
KM | 61.54
62.91 |
 | 4.9 | 5. | | 7.0 | 1.9 | 3,3 | 4.7 | 4.9 | • | o • | ֓֞֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֓֓֓֜֜֜֜֜ | | 3.5 | 8.3 | 03.7 | 6.60 | 17.1 | 7.0° | 44.1 | 54.9 | 66.5 | 178.68 | ۶. ا
د . ا | 23.4 | 54.0 | 8000 | 200 | 35.7 | 348.00 |
 | 1 6 6 7 | : | 7.76 | 12.3 | 31.93 | 74. | 7.00 | 28.6 | 59.8 | 594.32 | 24.0 | | | MEAN MOL WT. | 16.27 | ກູດ | 5 | 5.0 | - 4 | 0 | 3.6 | 3,1 | 2.6 | 2.1 | 11,50 | 3°C | 7 5 | • | | - | 2 | ۲. | 7 | <u>ت</u> د | จ | 6 | | 4.57 | * | | 8 | • | ی و | . 4 | 3,39 | ų, | ٧- | • | 0 | ō. | • | ۰ | 9 | 2 | ₹ | 1.98 | ٥ | | | LOG
(PRF SSURE
NT/M2) | 5.743 | 0 • 0
6 • 1 | 6.2 | 6.0 | 9 4 | 6.7 | œ | 93 | ē | = | -7.224 | ٠ | 9 | 3 4 | 2 | .5 | 7 | 92 | 8 | 6 | | 96 | 8 | -8.034 | å | 8.1 | 8.2 | 8 | | | -8.501 | 8 | 6 | 0
0 | | 8.83 | 8.91 | 8,00 | 0000 | | 9.24 | 49,292 | | | | LOG (N | 14.079 | 3.68 | 3.56 | 3.44 | 36.6 | 3,09 | 2.98 | 2.88 | 2,78 | 2.68 | 12,595 | 2.51 | 7.43
2.43 | 900 | 2.22 | 2.16 | 2.10 | 2,05 | 2,01 | 1.96 | 76°1 | 1.85 | 1.81 | 11.785 | 1.75 | 1.68 | 1991 | 1.54 | 24. | 1.37 | 11,318 | 1.26 | 1.21 | • 1 | 1.07 | 96.0 | 06.0 | 28.00 | | 53 | 0,57 | 10.526 | 4 | | | LOG (N(H) | 10.995
10.985 | 90 | 0.95 | 9.0 | 200 | 0.92 | 0.91 | 0.9 | 6.0 | 8.0 | 10,885 | 3 | | 9 0 | 8.0 | 0,8 | 0.83 | 0.82 | 1800 | 300 | 2 0 | 0.78 | 0.78 | 10.774 | ٥ | 75 | 0.73 | 7 | 200 | 99.0 | 10.650 | 63 | 70 | 2 | 0.5 | 0.5 | 0.5 | * < | 1 4 | 1 4 | 0,3 | 10,355 | • | | | LOG (N (HE) | 12,556 | 2.45 | 2,45 | 2,39 | 2.20 | 2.29 | 2,26 | .23 | • 20 | . 17 | 12,143 | Ţ. | 900 | 90 | 66 | 96 | 1.93 | 1,90 | 1.87 | 48.1 | 1 0 0 1 | 1.76 | 1.73 | 11,704 | 1.67 | 1.60 | 1,53 | 1.47 | 1 . 40 | 1.27 | 11.211 | 1,14 | 200 | 70°T | 90 | 28 | 29 | o u | 3 2 | 4 | 13 | 0 0 | . | ノ | | LOG (N (A)
/M3) | 8 6 5 5 3 3 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | • | | • | (0) N) TOP (N) | 14,041 | - 49 | 51 | 66. | 9- | 5 | 88 | ۲, | 2 | 2 | • | ٠, | • | • - | : .: | 11,673 | 1.55 | 1,43 | 1,32 | 7.0 | 70.07 | 0.86 | 0,75 | 10.640 | 70.0 | .25 | 6.0 | Ξ, | • | 92 | 8.669 | 4. | • | , , | 44. | -97 | 6.514 | ٥ | | | | | | | | LOG (N (02)
/M3) | 11,231 | 0.44 | 0,18 | 93 | 0 3 | 17 | 92 | 67 | 42 | 17 | 7.934 | 60. | • | | 73 | 49 | ~ | G | LDG (N (N2) | 12,789 | 2.10 | 1,87 | 1.65 | 7.00 | 96.0 | 0.76 | 0.54 | .33 | | 9.902 | 6,0 | ** | | 85 | 4 | 43 | .23 | 60, | | 4 6 | 23 | .03 | 6.836 | 40 | 6.157 | TEMP LC | 1091.4 | 093 | 095. | 960 | 060 | 097 | 097 | 960 | 960 | 960 | 86 | 860 | 860 | 000 | 660 | 660 | 660 | 660 | 660 | 660 | 000 | 660 | 660 | 1099.6 | 660 | 660 | 660 | 660 | 600 | 660 | 1099,9 | 660 | 660 | . 660 | 660 | 660 | •660 | | 90 | 100 | 100 | 110000 | 100 | | | HE1GHT
KM | 450 | 4 4 60 | 200 | 520 | , r | 580 | 009 | 620 | 640 | 099 | 089 | 200 | 072 | 26.6 | 780 | 800 | 820 | 840 | 860 | 200 | 920 | 940 | 096 | 980 | 1000 | 05 | 2: | 2 5 | 7 5 | 36 | 1350 | 6
7 | יי ה
ני | 2 | 1600 | 1700 | 1800 | 1900 | 2100 | 2200 | 2300 | 2400 | 0067 | EXOSPHERIC TEMPERATURE = 1200 K | HE I GHT
KM | TEMP
K | LOG(N(H2)
/M3) | LOG(N(O2) | LOG(N(O)
/M3) | LOG(N(A)
/M3) | LOG(N(HE)
/M3) | LOG (N(H)
/M3) | LOG(N
/M3) | LOG
(PRESSURE
NT/M2) | MEAN
MOL WT | DENSITY
SCALE HT
KM | DENSITY
KG/M3 | LOG(DEN
KG/M3) | |----------------|---------------|-------------------|------------------|------------------|------------------|-------------------|-------------------|------------------|----------------------------|----------------|---------------------------|----------------------|-------------------| | 90 | 188.0 | 19.746 | 19.170 | 17.390 | 17.824 | 14.573 | | 19.854 | 732 | 28.91 | 5,63 | 3.43E-06 | -5.465 | | 92 | 188. | 19.592 | 19.009 | 17.547 | 17.669 | 14.418 | | 19.700 | 886 | 28.85 | 5.58 | 2.40E-06 | -5.620 | | 94 | 188.6 | 19.437 | 18,843 | 17.646 | 17.514 | 14.263 | | 19.545 | -1.040 | 28.76 | 5.54 | 1.67E-06 | -5.776 | | 96 | 189.6 | | 18,672 | 17,686 | 17.359 | 14.108 | | 19.390 | -1.193 | 28.65 | 5.52 | 1.17E-06 | -5.933 | | 98 | 191.3 | 3 19.126 | 18.498 | 17,687 | 17.203 | 13.952 | | 19.234 | -1.344 | 28.52 | 5.53 | 8.12E-07 | -6.090 | | 100 | 194.3 | 18,970 | 18.323 | 17.664 | 17.048 | 13.797 | | 19.080 | -1.492 | 28.36 | 5.61 |
5.66E-07 | -6.247 | | 102 | 199.0 | 18.819 | 18.148 | 17,599 | 16.836 | 13.771 | | 18.927 | -1.634 | 28.21 | 5.60 | 3.96E-07 | -6.402 | | 104 | 206.0 | 18,666 | 17.971 | 17.541 | 16,625 | 13.742 | | 18.775 | -1.771 | 28.02 | 5.61 | 2.77E-07 | -6.557 | | 106 | 216. | 18,513 | 17.790 | 17.483 | 16.416 | 13.710 | | 18.624 | -1.901 | 27.80 | 5.64 | 1.94E-07 | -6.712 | | 108 | 229.8 | 18,362 | 17,605 | 17.422 | 16.212 | 13.675 | | 18.475 | -2.024 | 27.55 | 5.71 | 1.37E+07 | -6.865 | | 110 | 247.4 | | 17,418 | 17.354 | 16.014 | 13.639 | | 18.329 | -2.137 | 27.29 | 5.88 | 9.67E-08 | -7.015 | | 115 | 304.4 | | 16.984 | 17,165 | 15.563 | 13.547 | | 17.995 | -2.382 | 26.67 | 6.92 | 4.38E-08 | -7.359 | | 120 | 367.8 | | | 16.979 | 15.186 | 13.467 | | 17.718 | -2.576 | 26.19 | 8.41 | 2.27E-08 | -7.643 | | 125 | 433.4 | | 16.371 | 16.811 | 14.868 | 13.398 | | 17.486 | -2.737 | 25.81 | 9.89 | 1.31E-08 | -7.882 | | 130
135 | 499. | | 16.139 | 16,665 | 14,595
14,358 | 13.338 | | 17.289 | -2.872 | 25.46 | 11.55 | 8.23E-09 | -8.085 | | 140 | 564.6
625. | | 15.938
15.762 | 16.538
16.428 | 14.148 | 13.287
13.243 | | 17.119
16.972 | -2.989
-3.092 | 25.14
24.84 | 13.30
15.13 | 5.50E-09
3.86E-09 | -8.260
-8.413 | | 145 | 681 | | 15.604 | 16.330 | 13.961 | 13.204 | | 16.841 | -3.092
-3.185 | 24.55 | 17.02 | 2.83E-09 | ~8.548 | | 150 | 733.4 | | 15,462 | 16.243 | 13.791 | 13.171 | 11.557 | 16.725 | -3.269 | 24.28 | 18.93 | 2.14E-09 | -8.669 | | 155 | 779.9 | | 15.332 | 16.165 | 13.636 | 13.142 | 11,497 | 16.621 | -3.347 | 24.02 | 20.81 | 1.67E-09 | -8.778 | | | _ | | | - | | | | | | | _ | _ | | | 160 | 821. | | 15,212 | 16.093 | 13.491 | 13,115 | 11.445 | 16.525 | -3.420 | 23.77 | 22.66 | 1.32E-09 | -8.878 | | 170 | 891. | | 14.995 | 15.967 | 13.229 | 13.071 | 11.360 | 16.356 | -3.553 | 23.28 | 26.17 | 8.78E-10 | ~9.056 | | 180 | 946.1 | | 14.800 | 15.856 | 12.992 | 13.033 | 11.292 | 16.209 | -3+675 | 22.82 | 29.37 | 6.13E-10 | -9.213 | | 190 | 990. | | 14.620 | 15.757 | 12.773 | 13.001 | 11.238 | 16.076 | -3.788 | 22.38 | 32.26 | 4.43E-10 | -9.354 | | 200 | 1025.8 | | 14.452 | 15.665 | 12,567 | 12.973 | 11.181 | 15.955 | -3.894 | 21.95 | 34.89 | 3.29E-10 | -9.483 | | 210
220 | 1054.0 | | 14.293 | 15.580 | 12.371
12.182 | 12.947 | 11.142 | 15.843 | -3.994 | 21.55 | 37.23 | 2.49E-10 | -9.604 | | 230 | 1095.6 | | 14.139
13.991 | 15.498
15.421 | 11.999 | 12.923 | 11.110
11.083 | 15.738 | -4.090 | 21.15 | 39.41 | 1.92E-10
1.50E-10 | -9.717
-9.824 | | 240 | 1111.0 | | 13.847 | 15.345 | 11.820 | 12.901
12.880 | 11.059 | 15.638
15.543 | -4.182
-4.271 | 20.78
20.42 | 41.41
43.29 | 1.18E-10 | -9.927 | | 250 | 1123.7 | | 13.706 | 15.272 | 11.645 | 12.860 | 11.039 | 15.452 | -4.357 | 20.08 | 45.05 | 9.44E-11 | -10.025 | | | | | | | | | | | | | | | | | 260 | 1134.3 | | 13.568 | 15,201 | 11.474 | 12.840 | 11.021 | 15.364 | -4.441 | 19.75 | 46.72 | 7.59E-11 | -10.120 | | 270 | 1143.1 | | 13.432 | 15.132 | 11.305 | 12.822 | 11.006 | 15.280 | -4.522 | 19.44 | 48.30 | 6.15E-11 | -10.211 | | 280 | 1150.5 | | 13.298 | 15.063 | 11.138 | 12.804 | 10.992 | 15.198 | -4.601 | 19.15 | 49.81 | 5.01E-11 | -10.300 | | 290 | 1156.7 | | 13,165 | 14.996 | 10.973 | 12.786 | 10.980 | 15.118 | -4.679 | 18.88 | 51.26 | 4.11E-11 | -10.386 | | 300 | 1162.0 | | 13.034 | 14.929 | 10.810 | 12.768 | 10.969 | 15.040 | -4.754 | 18.62 | 52.66 | 3.39E-11 | -10.469 | | 310 | 1166.5 | | 12.904 | 14.863 | 10.648 | 12.751 | 10.959 | 14.965 | -4.828 | 18.38 | 53.99 | 2.81E-11 | -10.551 | | 320 | 1170.4 | | 12.775 | 14.798 | 10.488 | 12.735 | 10.950 | 14.891 | -4.901 | 18.16 | 55.28 | 2.34E-11 | -10.630 | | 330 | 1173.7 | - | 12.648 | 14.734 | 10.329 | 12.718 | 10.941 | 14.818 | -4.973 | 17.95 | 56.52 | 1.96E-11 | -10.708 | | 340 | 1176.5 | | 12,521 | 14.670 | 10.171 | 12.702 | 10,934 | 14.747 | -5.043 | 17.75 | 57.71
50.05 | 1.64E-11 | -10.784 | | 350 | 1179.0 | 13,803 | 12.395 | 14,606 | 10,013 | 12.685 | 10,926 | 14.677 | -5.112 | 17,57 | 58.85 | 1.39E-11 | -10,858 | | 360 | 1181.2 | 13,694 | 12,269 | 14.543 | 9.857 | 12.669 | 10,920 | 14.608 | -5.180 | 17.40 | 59.95 | 1.176-11 | -10,932 | | 370 | 1183.0 | | 12.144 | 14.481 | 9.702 | 12.653 | 10.913 | 14.540 | -5.247 | 17.24 | 61.01 | 9.92E-12 | -11,003 | | 380 | 1184.7 | 13.476 | 12,020 | 14,418 | 9.547 | 12.638 | 10.907 | 14.473 | -5.313 | 17.08 | 62.01 | 8.43E-12 | -11.074 | | 390 | 1186.1 | 13,367 | 11.897 | 14,356 | 9.393 | 12.622 | 10.901 | 14,407 | -5.379 | 16.94 | 62.98 | 7.19E-12 | -11,143 | | 400 | 1187.4 | 13,260 | 11.774 | 14,295 | 9.240 | 12.606 | 10.896 | 14,342 | -5.443 | 16.81 | 63.90 | 6.14E-12 | -11,212 | œ EXOSPHERIC TEMPERATURE = 1200 K | LOG (DEN
KG/M3) | -11,346 | 4 | o r | - 1 | 20 | σ, | <u>-</u> | N | w | 4 | 1 | .12.551 | 14.00 | 11001 | 16.61 | 14.98 | 13,08 | 13,18 | 13,28 | 13,37 | 13.47 | : | | *40.0 | 13,72 | 13,80 | 13.88 | 13,95 | 14.01 | , 08 | 14.14 | 14.19 |
14.34 | 14.420 | 704 | 000 | | | | | 76.41 | 14.97 | 5 | ֓֞֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֓֓֓֓֓֜֜֜֜֜֓֓֓֓֓֓ | | | 200 | 2.47 | 900 | 2.64 | 2.72 | 90 | φ.
Φ. | | |-----------------------------|---------|--------|-------------|-----------|-------|----------|----------|--------|--------|--------|---|---------------|---|-------|-------|-------|-------|-------|-------|-------|--------|---|----------|-------|-------|-------|-------|-------|-------|-------|-------|--------|------------|-----------|-------|---------|-------------|------------|------|------|--------------|--------|-------|--|-------|-------|---------------|---------|-------|--------|-------|----------|----------|---| | DENSITY
KG/M3 | 516 | 1 L | 1 1 1 1 1 1 | 1 1 0 0 0 | 40E-1 | 190 | .08E-1 | .17E-1 | .73E-1 | .64E-1 | 1 | 2.81E-13 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1 | 335-1 | 145 | 23t 1 | 535-1 | 21E-1 | 196-1 | 39E-1 | L | 2.765-14 | 107 | 37E. | 56E-1 | 315-1 | 12t-1 | 575-1 | 27E-1 | 21E-1 | 35E-1 | 7/6=1 | 3. (35-13 | 1170 | 1000 | 1 - 1 7 1 0 | 11100 | 1 | 1000 | 7 8 12 6 7 8 | .05E=1 | 106 | | 101 | | 135. | . 35E-1 | 735-1 | .25E-1 | 87E-1 | 1.565-16 | .32E-1 | | | DENSITY
SCALE HT
KM | 65.63 | ٦. | 9 | 3 | ~ | 4 | ď | ٩ | ۲. | 8 | | 78.06 | 9 | • | 7.1 | 3.7 | ຜູ | .5 | 6.6 | 2.6 | 5.7 | | 66 | e e | 5 | 6 | 6 | 2 | 93 | | 3 | 5 | 4 C | 250.82 | , | 7.00 | 7.01 | 7000 | | | * 1 0 | 93.0 | 7 0 1 | 9 | 2 5 | 7. | 8 . 8 | 93.4 | 03.2 | 24.7 | 9 | 573.17 | 9.00 | | | MCL WT | 16.57 | ٠. | ٠, | ŝ | ŝ | 'n | ທ້ | 'n | 4 | • | | 14.11 | 3.7 | | 8 | 2.9 | 1.8 | | ۲. | ; | ď | • | 0.6 | * | œ. | 4. | ٠, | ď, | ٦. | 8 | ŝ | 7 | • | 2 · | • | ٠ | • | • | • | • | ٠ | ٠ | • | • | ٧. | ~ું ' | ٠, | ŝ | æ | • | ٥, | 2.46 | ۳. | | | 1 OG
(PRESSURE
NT/M2) | 5 | 69 | 5.81 | 5.93 | 6.05 | 6.16 | 6.27 | 6.38 | 649 | 9 | | -6.703 | 89 | 68.9 | 6.98 | 6 | 7.16 | 7.24 | 31 | 7.38 | -7.453 | | -7.515 | 5 | 62 | 191 | 72 | 77 | 81 | 88 | 88 | 95 | 8 | E 0 13 | 8.13 | B • Z U | 8.25 | 1 C 0 H | 8.36 | 74. | 8.47 | • 52 | ; | • | 2 6 | 8 1 8 | 8 . 86 | 8.94 | 9.01 | 0. | 9.14 | -9.198 | • 25 | | | LOG(N
/M3) | 4.21 | • | 3.96 | 3.84 | 3,73 | 3.61 | 3,50 | 3,39 | 3.28 | 3.18 | | • | 98 | 88 | • 79 | ۲, | •62 | • 54 | 46 | 39 | 12,328 | | 2,76 | 2,20 | 2,15 | 2.10 | 2,05 | 2,01 | 1.96 | • | 1.89 | 1.85 | 1.77 | 11,708 | 1.064 | 85°1 | 1.52 | 1.46 | 1,41 | 1.36 | 30 | 1.26 | 2 | 9 | 7 | 6 | 7 | ě | 92 | 2 | 4, | 10,583 | 52 | | | LOG(N(H) | 0.88 | 10.876 | 0.86 | 0.85 | 0.85 | 0.84 | 0.83 | .82 | 8. | 18 | | • | ٦. | ٦. | ٦. | ٦. | ٦. | ۲, | ~ | ٦. | 10.740 | | 10,734 | | | | | | | | | | 0.65 | 10.642 | 79.0 | 19.0 | 0.59 | 0.58 | 0.56 | 3 | . 53 | • 52 | (| • · | ံ | ·. | o. | ំ | ં | ċ | ં | 10,296 | ċ | | | LOG (N (HE)
/M3) | 2,57 | • | 2,51 | 2.48 | 2,45 | 2,42 | 2,39 | 2,36 | 2,33 | 2,30 | | 7 | 2,25 | 2,52 | 2,19 | 2,16 | 2.14 | 2,11 | 2.08 | 2.05 | 12,031 | | ູ້ | ⇉ | _: | .• | _: | ÷ | _: | • | _; | 11.768 | . . | 11.642 | ₫. | | _: | . . | ₫, | ₫. | ∴ | _; | č | 90 | .95 | 84 | • 74 | •64 | • 54 | •45 | • 35 | 10.267 | .17 | ر | | LDG (N (A) | 93 | 8.633 | 693 | 6 | .73 | 444 | 5. | •86 | .57 | 28 | | 6. 004 | LOG (N (O) | 4.1 | °. | ຕຸ | ж
8 | 3.6 | 3.
5. | 3.4 | 3 | 3.2 | 13,111 | • | 2.9 | 2,88 | 2,77 | 2,65 | 2,54 | 2,43 | 2,32 | 2.21 | 2,10 | 12,000 | | 8.1 | 1.78 | 1,67 | 1,57 | 1.46 | 1,36 | 1,25 | 1,15 | 1.05 | .95 | 5 | 10.447 | 2 | 3 | = | φ. | \$ | Ξ. | 8 | ŝ | : | 77 | 7.691 | .27 | 86 | 440 | 6 | | | | | | | L0G(N(02)
/M3) | _: | 11,288 | _: | ŏ | ਂ | ö | 0 | 6 | 9.639 | 9.410 | • | • | • | • | • | • | • | • | • | • | 7,189 | • | .97 | • 76 | 6.547 | 33 | .12 | EMP LOG(N(N2)
K /M3) | 3.04 | 2.8 | 2,62 | 2.41 | 2,20 | 2.00 | 1.79 | 1.59 | 30 | 11,190 | • | 66 | 79 | • 59 | 39 | 20 | 8 | .8 | - 62 | 4 | 9.245 | , | ٥. | 86 | 68 | 49 | 3 | 13 | 94 | 76 | 58 | 3. | 96. | 6.527 | 60. | TEMP L | 189. | 191 | 192. | 193, | 194. | 195. | 195. | 196 | 104 | 1197.2 | • | 197. | 197. | 198 | 198. | 198. | 198 | 198. | 198 | 108 | 1199.0 | | 199. | 199. | 199. | 199. | 199 | 199 | 199. | 66 | 199 | 1199.5 | 199. | 1199.7 | 199. | 199. | 199. | 199. | 199. | 199. | 199. | 199. | | 199. | 199. | 199. | 199. | 200 | 200 | 200 | 200 | 1200.0 | 200 | | | HE I GHT
KM | ~ | 4 | • | œ | 0 | ~ | • | · vo | α | 009 | , | 620 | 940 | 099 | 680 | 700 | 720 | 740 | 760 | 780 | 800 | | N | 4 | ø | œ | 0 | N | • | • | æ | 1000 | 5 | 1100 | S | 0 | S | 0 | S | 0 | S | 0 | | 1600 | 1700 | 1800 | Φ | 0 | _ | 2 | 3 | 2400 | S | | EXOSPHERIC TEMPERATURE = 1300 K | HEIGHT
KM | TEMP
K | LOG (N (H2)
/M3) | LOG(N(02)
/M3) | LOG(N(O)
/M3) | LOG (N(A)
/M3) | LGG (N (HE) | LOG (N (H)
/M3) | LOG(N
/M3) | LOG
(PRFSSURE
NT/M2) | MEAN
MCL WT | DENSITY
SCALE HT
KM |
DENSITY
KG/M3 | LOG(DEN
KG/M3) | |--------------|----------------|---------------------|-------------------|------------------|-------------------|-------------|--------------------|---------------|----------------------------|----------------|---------------------------|------------------|-------------------| | 90 | 188.0 | 19.746 | 19.170 | 17.390 | 17.824 | 14.573 | | 19.854 | -•732 | 28.91 | 5.63 | 3.43E-06 | -5.465 | | 92 | 188.1 | | | 17.547 | 17,669 | 14.418 | | 19.700 | 886 | 28.85 | 5.58 | 2.40E-06 | -5.620 | | 94 | 188.6 | | | 17.646 | 17.514 | 14.263 | | 19.545 | -1.040 | 28.76 | 5.54 | 1.67E-06 | -5.776 | | 96 | | | | 17,685 | 17.359 | 14.108 | | 19.389 | -1.193 | 28.65 | 5.52 | 1.17E-06 | -5.933 | | | 189.6 | | | 17.687 | 17.203 | 13.952 | | 19.234 | -1.344 | 28.52 | 5.52 | 8.12E-07 | -6.091 | | 98 | | | | 17.664 | 17.048 | 13.797 | | 19.080 | -1.491 | 28.36 | 5.61 | 5.66E-07 | -6.248 | | 100
102 | 194.6
199.4 | | 18.148 | 17.598 | 16.836 | 13.770 | | 18,927 | -1.633 | 28.21 | 5.60 | 3.96E-07 | -6.403 | | 102 | 206.7 | | 17.970 | 17.540 | 16,625 | 13.741 | | 18.775 | -1.770 | 28.02 | 5.61 | 2.77E-07 | -6.558 | | | 217.3 | | 17.789 | 17.482 | 16.416 | 13.709 | | 18.623 | €1.900 | 27.80 | 5.63 | 1.94E-07 | -6.712 | | 106
108 | 231.6 | | | 17.420 | 16.212 | 13.674 | | 18.474 | -2.021 | 27.55 | 5.71 | 1.36E-07 | -6.866 | | 108 | 231.0 | 10.30. | 17,004 | 11.420 | | 23.014 | | 10.47 | -2,02. | | 2.1. | .,50=-0. | , | | 110 | 249.9 | 18,213 | 17.418 | 17.352 | 16.014 | 13.637 | | 18.328 | -2.134 | 27.29 | 5.88 | 9.64E-08 | -7.016 | | 115 | 309.2 | | 16.984 | 17,162 | 15.565 | 13.544 | | 17.994 | -2.375 | 26.68 | 6.95 | 4.37E-08 | -7.359 | | 120 | 375.3 | | | 16,976 | 15.192 | 13.463 | | 17.719 | -2.567 | 26.21 | 8.48 | 2.28E-08 | -7.642 | | 125 | 443.6 | 17.341 | 16.376 | 16,809 | 14.878 | 13.393 | | 17.489 | -2.724 | 25.84 | 9.99 | 1.32E-08 | _7 .87 8 | | 130 | 512.7 | 17,134 | 16,148 | 16,664 | 14,609 | 13.334 | | 17.294 | -2.856 | 25,50 | 11.68 | 8.33E-09 | -8.079 | | 135 | 580.2 | 16,954 | 15,950 | 16.538 | 14.375 | 13.282 | | 17,126 | -2.970 | 25.19 | 13.46 | 5.59E-09 | -8,252 | | 140 | 644.7 | 16,796 | 15.776 | 16,428 | 14.170 | 13.238 | | 16.980 | -3.071 | 24.90 | 15.31 | 3.954-09 | -8.404 | | 145 | 705.1 | 16.656 | 15.621 | 16.331 | 13.986 | 13.199 | | 16.851 | -3.161 | 24.63 | 17.22 | 2.906-09 | -8.537 | | 150 | 761.0 | 16.529 | 15.481 | 16.245 | 13.819 | 13.166 | 11.472 | 16.736 | -3.242 | 24.37 | 19.16 | 2.20E-09 | -8.657 | | 155 | 811.9 | 16.414 | 15,353 | 16.167 | 13.667 | 13.136 | 11.413 | 16.633 | -3.318 | 24.12 | 21.11 | 1.72E-09 | -8.765 | | | | | | | | | | | | | 22.02 | | 0.043 | | 160 | 858.1 | | 15.236 | 16.096 | 13.526 | 13.109 | 11.361 | 16.539 | -3.388 | 23.88 | 23.03 | 1.37E-09 | -8.863 | | 170 | 936.9 | | 15.024 | 15,971 | 13.272 | 13.064 | 11.274 | 16.372 | -3.516 | 23.42 | 26.73 | 9.17E-10 | -9.038 | | 180 | 1000.4 | | | 15.863 | 13.043 | 13.026 | 11.206 | 16.228 | -3.632 | 22.98 | 30.17 | 6.45E-10 | -9.190 | | 190 | 1051.4 | | | 15.766 | 12.834 | 12.994 | 11.150 | 16.099 | -3.739 | 22.57 | 33.31 | 4.71E-10 | -9.327 | | 200 | 1092.5 | | | 15.677 | 12.637 | 12.965 | 11.092 | 15.982 | -3.840 | 22.17 | 36.21 | 3.53E-10 | -9.452 | | 210 | 1125.8 | | | 15.595 | 12,451 | 12.940 | 11.053 | 15.673 | -3.935 | 21.78 | 38.78 | 2.70E-10 | -9.568 | | 220 | 1153.0 | | | 15.517 | 12.273 | 12.917 | 11.020 | 15.772 | -4.026 | 21.41 | 41.17 | 2.10E-10 | -9.677 | | 230 | 1175.2 | | | 15.443 | 12.101 | 12.895 | 10.992 | 15.677 | -4.113 | 21.06 | 43.37 | 1.665-10 | ÷9.779 | | 240 | 1193.5 | | | 15.372 | 11.933 | 12.875 | 10,967 | 15.586 | -4.197 | 20.72 | 45.42 | 1.33E-10 | -9.877 | | 250 | 1208.7 | 15.032 | 13,799 | 15,303 | 11.770 | 12.856 | 10.946 | 15.499 | -4.278 | 20.39 | 47.32 | 1.07E-10 | -9.971 | | 260 | 1221.3 | 14.918 | 13,670 | 15.237 | 11.610 | 12.837 | 10,928 | 15,416 | -4.357 | 20.08 | 49.12 | 8.69E-11 | -10,061 | | 270 | 1231.9 | | | 15.171 | 11.452 | 12.820 | 10.911 | 15.336 | -4.434 | 19.78 | 50.81 | 7.11E-11 | -10.148 | | 280 | 1240.7 | | | 15.107 | 11.297 | 12.802 | 10.897 | 15.258 | -4.508 | 19.49 | 52.43 | 5.86E-11 | -10.232 | | 290 | 1248.2 | | | 15.044 | 11.144 | 12.786 | 10.884 | 15.182 | -4.581 | 19.22 | 53.96 | 4.86E-11 | -10.314 | | 300 | 1254.5 | | | 14.982 | 10.992 | 12.769 | 10.873 | 15,109 | -4.653 | 18,97 | 55.45 | 4.05E-11 | -10.393 | | 310 | 1259.9 | | | 14.921 | 10.842 | 12.753 | 10.862 | 15.037 | -4.723 | 18.73 | 56.87 | 3.39E-11 | -10.470 | | 320 | 1264.5 | | 12,933 | 14.861 | 10.693 | 12.738 | 10.853 | 14,967 | -4.791 | 18.50 | 58.24 | 2.85E-11 | -10.546 | | 330 | 1268.5 | | | 14,801 | 10.546 | 12.722 | 10.844 | 14.898 | -4.859 | 18.28 | 59.55 | 2.40E-11 | -10.620 | | 340 | 1271.9 | | 12.697 | 14.741 | 10.399 | 12.707 | 10.836 | 14.831 | -4.925 | 18.08 | 60.83 | 2.03E-11 | -10.692 | | 350 | 1274.9 | | 12,580 | 14.682 | 10.254 | 12.692 | 10.828 | 14.765 | -4.990 | 17.89 | 62.06 | 1.73E-11 | -10.762 | | | | - | - | | | | | | | | | | | | 360 | 1277.4 | | | 14,624 | 10.109 | 12,677 | 10.822 | 14,700 | -5.054 | 17.72 | 63.25 | 1.47E-11 | -10.832 | | 370 | 1279.7 | | | 14.566 | 9.965 | 12.662 | 10.815 | 14.636 | -5.117 | 17.55 | 64.39 | 1.26E-11 | -10.900 | | 380 | 1281.7 | | | 14,508 | 9.822 | 12.647 | 10.809 | 14.573 | -5.179 | 17.39 | 65.49 | 1.08E-11 | -10.967 | | 390 | 1283.4 | | | 14.451 | 9.680 | 12.633 | 10.803 | 14.511 | -5.241 | 17.24 | 66.55 | 9.28E-12 | -11.032 | | 400 | 1284.9 | 13,459 | 12,006 | 14.394 | 9.538 | 12.618 | 10.798 | 14.449 | -5.302 | 17.10 | 67.57 | 7.99E-12 | -11.097 | EXOSPHERIC TEMPERATURE = 1300 K | L0G (DEN
KG/M3) | -11,224
-11,347
-11,468
-11,586 | 11.926
-12.036
-12.144
-12.251 | 0.000000000000000000000000000000000000 | 113 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25 | 11140
111444
111444
111446
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
11146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
1146
11 | 115.062
115.062
115.062
115.062
115.035
115.062
115.063
115.063 | |----------------------------|--|---|---
---|---|---| | DENSITY
KG/M3 | 5.976-12
3.416-12
2.606-12
1.996-12 | | 4,400 F 13 |
4,300
3,300
2,200
2,200
1,588
1,588
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166
1,166 | 7.25E.15
3.44E.15
3.44E.15
3.65E.15
2.65E.15
2.67E.15
1.660E.15
1.660E.15 | 1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006
1006 | | DENSITY
SCALE HT
KM | 71.28
71.28
72.93
74.45
75.86 | 78.45
79.65
80.81 | 883.11
864.28
865.49
865.49
865.10
899.10
901.18
901.18 | 99,58
102,36
105,50
109,06
1113,09
117,64
122,76
128,51
14,93 | 163.18
188.93
218.53
220.36
282.47
312.92
340.35
364.15 | 428.94
486.94
486.98
503.67
521.24
559.16
579.65 | | MOL WT | 16.62
16.62
16.62
16.21
16.01 | น พ.พ.พ. ๔ | 11111111111111111111111111111111111111 | 010
0010
000
0000
0000
0000
0000
0000 | 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 88888888888888888888888888888888888888 | | LOG
(PRESSURE
NT/M2) | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 10000000000000000000000000000000000000 | .66.680
.66.680
.66.680
.66.871
.66.858
.77.0024
.77.102 | 17.9316
17.9440
17.9440
17.9497
17.951
17.9694
17.797 | - 7 - 862
- 7 - 862
- 7 - 940
- 8 - 1010
- 8 - 194
- 8 - 196
- 8 - 345
- 8 - 345 | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | L06(N | 14.329
14.212
14.097
13.984
13.874 | . 4 | 13.255
13.255
13.067
12.889
12.722
12.569
12.569 | 12.366
12.366
12.306
12.306
12.195
12.195
12.098
12.053
12.012 | 11.886
111.886
111.736
111.672
111.556
111.556
111.451
111.353 | 111.260
111.172
111.008
110.093
10.795
10.755
10.666 | | LOG (N (H) | 10,787
10,778
10,769
10,761
10,753 | 10,738
10,731
10,724
10,717 | 10.710
10.703
10.696
10.689
10.683
10.670
10.663 | 100.644
100.638
100.632
100.619
100.613
100.601
100.601 | 10.574
10.556
10.545
10.517
10.517
10.490
10.463 | 10.424
10.399
10.375
10.375
10.328
10.283
10.261
10.261 | | LOG (N (HE)
/M3) | 12.590
12.561
12.533
12.505
12.478 | | 12,317
12,290
12,238
12,238
12,13
12,187
12,167
12,136
12,111 | 12,061
12,037
12,012
11,988
11,963
11,915
11,8915
11,867 | 11.785
11.7285
11.671
11.651
11.559
11.759
11.397
11.344 | 11.190
11.091
10.899
10.807
10.717
10.529
10.543 | | LOG (N (A)
/M3) | 9.256
8.977
8.700
8.424
8.151 | | 6.549
6.028
6.028 | | | | | LOG(N(O) | 14.280
14.168
14.057
13.946 | . 40 10 4 40 | 13.194
13.089
12.985
12.677
12.577
12.575
12.374
12.374 | 12.174
11.9076
111.8978
111.8880
111.5980
111.5990
111.400 | 110.071
100.8613
100.388
100.167
99.735
99.519
99.519 |
8.000
8.000
7.000
7.000
7.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000 | | L0G(N(02)
/M3) | 11.780
11.557
11.334
11.114 | 2000 | 9.611
9.602
9.194
9.194
8.7987
8.3374
7.971 | 6.2.4.9
6.0.4.9
6.0.4.9
6.0.4.9
6.0.4.9
6.0.4.9
6.0.13 | | | | TEMP LOG(N(N2)
K /M3) | 13.261
13.065
12.870
12.677
12.677 | 27.01. | 11.362
11.178
110.996
10.815
10.635
10.278
10.101
9.926 | 99-557-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7 | 7.
4.
5.
6.
6.
6.
6.
6.
6.
6.
6.
6.
6.
6.
6.
6. | | | | 1287.5
1289.5
1291.1
1292.4
1293.5 | 9 9 9 9 9 | 1297.0
1297.5
1297.6
1297.8
1298.1
1298.2
1298.4
1298.5 | 1298.9
1299.0
1299.0
1299.1
1299.2
1299.2
1299.3
1299.4 | 1299.5
1299.6
1299.7
1299.7
1299.8
1299.8
1299.8 | 1299.9
1299.9
1299.9
1299.9
1299.9
1290.0
1300.0
1300.0 | | HE I GHT
KM | 4 4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 620
640
660
680
700
720
740
760
780 | 820
840
860
880
900
920
940
960 | 1050
1150
1150
1250
1250
1350
1450
1450 | 1600
1700
1800
1900
2000
2200
2300
2400
2500 | EXOSPHERIC TEMPERATURE = 1400 K ## LOG MEAN . DENSITY PRESSURE **HEIGHT** TEMP LOG(N(N2) LOG(N(O2) LOG(N(O) LOG(N(A) LOG(N(HE) LOG(N(H) LOG(N MOL WT SCALE HT DENSITY LOG (DEN /M31 /M3) /M31 /M3) NT/M2) KG/M3 KG/M3) ΚM /M3) /M3) /Ma) KM 188.0 19.746 19.170 17.390 17.824 14.573 19.854 -.732 28.91 5.63 3.43E-06 -5.465 2.40E-06 92 19.592 19.009 17,547 17.669 14.418 19.700 28.85 5.58 188.1 -.886 -5.620 94 19.436 18.843 17.646 17.514 14.263 19.545 28.76 5.54 1.67E-06 -5.776 188.6 -1.040 17.359 19.389 1.17E-06 8.11E-07 -5.933 96 189.7 19.281 18.672 17.685 14.108 -1.193 28.65 5.52 17.203 191.6 19.125 18,498 17,687 13.952 19.234 28.52 5.52 -6.091 -1.344 100 18.970 17.664 17.048 13.797 19.079 5.60 5.65E-07 -6.248 194.8 18.322 -1.491 28.36 13.770 3.95E-07 102 199.9 18.818 18.147 17.598 16.835 18.926 -1.633 28.21 5.59 -6.403 13.740 2.77E-07 104 207.4 18.665 17.970 17.539 16.624 18.774 -1.769 28.02 5.60 -6.558 1.94E-07 16.416 18.623 -1.898 106 218.3 18.512 17.789 17.481 13.708 27.81 5.63 -6.713 17.418 1.36E-07 108 233.2 18,360 17.604 13.672 -2.019 5.70 -6.867 27.56 110 252.1 18.212 17.417 17.350 16.014 18.327 27.29 5.88 9.62E-08 -7.017 13.635 -2.131 115 313.6 17.870 16.985 17.159 15.567 13.541 17.994 -2.370 26.69 6.97 4.37E-08 -7.360 17.585 17.345 2.28E-08 120 382.1 16.649 16.973 15.197 13.459 17.720 17.492 -2.558 26.23 8.53 -7.641 1.33E-08 13.390 125 452.9 16.382 16.807 14.886 -2.712 25.87 10.08 -7.875 8.43E-09 5.68E-09 17.298 130 17,140 16,156 16,663 14,621 13.330 25.54 11.80 -8.074 524.6 -2.842 15,960 16.538 14.391 13.278 17.132 25.24 13.60 -8.246 135 594.9 16.962 -2,954 4.02E-09 16.429 14.188 15.47 -8.395 140 662.5 16.806 15,789 13.234 16.987 -3.052 24.96 2.97E-09 16,332 14,007 145 726.5 16,667 15,636 13,195 16.860 -3.139 24.70 17,40 -8.528 2.26E-09 1.77E-09 16.746 -8.646 150 786.2 16.542 15,498 16,246 13.844 13.161 11,396 -3.219 24.44 19.37 15,372 155 841.4 16,428 16,169 13.694 13.130 11.336 16.643 -3.292 24.21 21.36 -8,753 891.8 16,324 15.257 16,098 13.557 13.103 11.284 16.550 -3.359 23.98 23.34 1.41E-09 -8.850 160 9.51E-10 6.74E-10 170 979.4 16,138 15.050 15,975 13.308 13.057 11.197 16.386 -3.483 23.54 27.19 -9.022 13.087 180 1051.1 15.974 14.866 15,867 13.019 11.128 16.244 -3.594 23,13 30.85 -9.172 14.700 4.95E-10 190 1109.3 15,825 15.772 12.885 12.987 11.072 16,118 -3.697 22,73 34.23 -9.305 200 1156.8 15,688 14,546 15,686 12.697 12.958 11,013 16,004 -3.793 22.36 37.38 3.75E-10 -9.426 2.89E-10 2.27E-10 210 1195.5 15,559 14,401 15,607 12,519 12.933 10.973 15.899 -3.883 21.99 40.19 -9.538 220 1227.1 15.437 14.263 15,532 12.350 12,910 10.938 15.801 42.81 -3.970 21.64 -9.643 1253.1 15,320 15.461 15.393 12,187 1.81E-10 230 14,130 12.889 10,909 15,710 -4.052 21.30 45.21 -9.742 1.46E-10 1.19E-10 15,207 12,029 12.870 240 1274.6 14.002 10.884 15,623 -4.132 20.98 47.44 -9.835 1292.4 15,328 250 15.097 13.878 11.875 12.851 10.862 15.539 -4.209 20.67 49.50 -9.925 260 1307.3 14,990 13,756 15,265 11.725 12.834 10.843 15,460 -4.284 20.36 51.44 9.75E-11 8.05E-11 -10.011 53.25 270 1319.7 13,637 15,203 11.577 -10.094 14.885 12.817 10.826 15,383 -4.356 20.08 6.69E-11 280 1330.1 14.782 15.143 11.432 15.309 54.98 -10.174 13.520 12.800 10.811 -4.427 19.80 290 1338.9 15.084 11.288 10.798 15.237 5.60E-11 -10.252 13.405 12.784 -4.496 19.54 56.61 14.681 300 1346.3 14.581 13.291 15,026 11.147 12.769 10.786 15.167 -4.564 19.28 58.18 4.70E-11 -10.328 3.97E-11 310 1352.7 14.482 13.178 14.969 11.007 12.754 10.775 15.099 19.04 59.68 -10,401 -4.630 3.36E-11 -10,473 320 1358.1 14.384 13,067 14,912 10.868 12,739 10.765 15.032 -4.695 18.82 61.13 2.86E-11 2.44E-11 2.09E-11 10.730 10.756 -4.759 -10.544 330 1362.8 14,287 12,956 14.856 12.724 14.967 18.60 62.51 10.594 -10.612 340 1366.9 14.191 12.847 14.800 12.710 10.748 14.903 -4.822 18.40 63.87 1370.3 -10,680 350 14,096 12.738 14,745 10.458 12.696 10.740 14.840 -4.883 18.20 65.17 360 1373.4 14,001 12,630 14,691 10.323 12.682 10.733 14.778 -4.944 18.02 66.44 1.80E-11 -10.746 370 1376.0 13,907 12.522 14,637 10.189 12.668 10,726 14.718 -5,004 17.85 67.66 1.55E-11 -10.810 1.34E-11 380 1378.4 13,813 12,415 14.583 10.056 12.654 10.720 14.658 -5.063 17,69 68.84 -10.874 -5.121 1.16E-11 390 1380.4 13.720 12,309 14,530 9.923 12.641 10.714 14.599 17.53 69.99 -10,937 400 9.792 1382.2 13,627 12,203 14.476 12.627 10.709 14.541 -5.178 17.39 71.09 1.00E-11 -10.998 ... ţ EXOSPHERIC TEMPERATURE = 1400 K | L0G (DEN KG/M3) | -111.236
-111.350
-111.350
-111.571
-111.7678
-111.9887 | 12,188
12,286
12,286
12,438
12,572
12,565
12,865
13,935
13,935 | 13,101
113,101
113,274
113,274
113,509
113,563
113,655
113,724 | -13,946
-14,085
-14,207
-14,314
-14,408
-14,564
-14,691 | 114.852
114.948
115.039
115.209
115.200
115.200 | |----------------------------|--|---|---|--|--| | DENSITY
KG/M3 | 7.6616-12
7.6616-12
3.466-12
2.696-12
1.6566-12
1.0366-12
1.036-12
1.046-12 | 65 113 12 12 12 12 12 12 12 12 12 12 12 12 12 | 7.81E.14
5.93E.14
9.69E.14
9.69E.14
2.61E.14
1.89E.14
1.682E.14 | 1.00 | 11.00 10 10 10 10 10 10 10 10 10 10 10 10 1 | | DENSITY
SCALE HT
KM |
73.19
75.16
76.99
78.70
80.29
81.78
83.17
84.50 | 88.21
89.40
90.59
91.80
93.06
94.36
97.22
97.22 | 102,44
106,84
106,84
112,29
115,29
119,09
123,10 | 147.54
166.56
189.88
217.19
247.68
312.07
342.70
395.63 | 435.83
4666.10
528.00
528.00
5546.05
568.37
610.25 | | MCL WT | 17.12
16.88
16.88
16.64
16.26
115.92
115.92
115.56 | 112.888
112.80
113.888
113.888
113.888
112.80
112.80 | 111.96
111.051
111.051
100.10
9.62
9.62
9.15
8.69
8.25
7.83 | 44444444444444444444444444444444444444 | ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ | | LOG
(PRESSURE
NT/M2) | 55.291
55.291
55.601
55.615
55.821
55.821
55.821
56.016 | 166 9305
166 9396
166 9485
166 953
166 961
166 961
166 961
166 961 | -7.120
-7.187
-7.313
-7.313
-7.371
-7.426
-7.479
-7.528 | 17.718
17.8805
17.8805
17.8805
18.013
18.013
18.175
18.225 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | LOG (N
/M3) | 14.28
14.28
14.208
14.208
13.895
13.595
13.596 | 133.410
133.410
133.729
133.729
112.8973
112.8973
112.8973
112.4813
112.438 | 12.5594
12.5524
12.5524
12.5546
12.345
112.788
112.786
112.139
12.139 | 11. 9996
11. 9996
11. 932
11. 764
11. 589
11. 538
11. 538 | 11.350
11.764
11.182
11.028
10.956
10.956
10.782
10.697 | | LOG (N(H) | 10.698
10.689
10.689
10.689
10.665
10.658
10.631 | 10.623
10.617
10.617
10.604
10.598
10.586
10.580
10.574 | 10.562
10.556
10.556
10.556
10.539
10.533
10.528
10.528
10.516 | 10.497
10.484
10.470
10.477
10.444
10.444
10.408
10.394
10.382 | 10.358
10.334
10.312
10.258
10.247
10.226
10.206
10.166 | | LOG(N(HE)
/M3) | 12.601
12.541
12.548
12.522
12.496
12.471
12.421
12.396
12.396 | 12,347
12,322
12,298
12,250
12,250
12,203
12,179
12,179
12,156 | 12,109
12,087
12,064
12,041
12,018
11,996
11,996
11,951
11,929 | 11.883
111.800
111.747
111.694
111.6643
111.6643
111.642
111.644 | 111.301
11.208
11.018
11.019
10.845
10.865
10.699
10.699 | | LOG (N(A)
/M3) | 9.530
9.0270
9.0270
9.0270
8.0272
7.051
7.051
7.051 | 7.014
6.771
6.530
6.290
6.052 | | | • | | LCG(N(0) | 14.371
14.266
14.266
14.063
13.958
13.857
13.657
13.558 | 13.361
13.264
13.167
13.071
12.976
12.881
12.598
12.699
12.599 | 12, 414
12, 323
12, 231
12, 141
12, 051
11, 961
11, 783
11, 695 | 11, 390
11, 176
10, 964
10, 756
10, 550
10, 146
9, 948
9, 753 | 9.182
8.813
8.453
8.101
7.424
7.429
7.4097
6.778
6.160 | | LOG(N(02)
/M3) | 11, 993
11, 785
11, 579
11, 579
11, 374
10, 968
10, 568
10, 568
10, 370 | 99.04.04.04.04.04.04.04.04.04.04.04.04.04. | 0.084
7.99084
7.99084
7.9334
7.1937
7.1937
7.1937
6.8828
6.8828
6.8828
6.8828 | 6. 036 | | | LOG (N (N2) | 13.443
13.443
13.0861
12.901
12.723
12.346
12.195
12.022
11.850 | 11.554
11.554
11.359
11.139
10.6632
10.5632
10.3645
10.3645 | 10
9.00
9.10
9.10
9.34
9.34
9.02
9.02
8.01
8.01 | 8.227
7.852
7.852
7.117
6.756
6.050 | | | TEMP L | 138875.2
138875.2
13990.5
13991.0
13994.2
13995.3
13995.0 | 1396.5
1396.5
1397.5
1397.7
1397.9
1398.1
1398.6 | 13988.4
13988.8
13998.0
13999.0
13999.2
13999.2
13999.3 | 13999.5
13999.5
13999.6
13999.7
13999.7
13999.8
13999.8 | 1399.9
1399.9
1399.9
1399.9
1399.9
1399.9
1400.0
1400.0 | | HE I GHT
KM | 44444444444444444444444444444444444444 | 620
660
680
720
720
740
780 | 8820
8860
9900
9940
9960
1000 | 100
1150
1150
1250
1350
1450
1450 | 1600
1700
1800
2000
2200
2300
2300
2500
2500 | EXOSPHERIC TEMPERATURE = 1500 17.873 18.070 18.240 18.388 18.519 18.636 LOG(DEN KG/M3) -10.671 -10.733 -10.793 -10.853 1.456.09 6.996.10 5.996.10 3.946.10 2.496.10 1.956.10 1.596.10 10.08 10 2.13E-11 1.85E-11 1.61E-11 1.23E-11 3.43E.06 2.40E.06 1.67E.06 1.17E.06 8.11E.07 2.65E.07 1.93E.07 1.93E.07 DENSITY KG/M3 MEAN DENSITY MOL WT SCALE HT KM 41.48 44.33 46.94 49.37 51.60 10.16 13.73 15.62 17.56 17.56 19.56 18.69 18.69 24.06 23.55 23.56 22.88 22.88 22.52 22.17 21.86 21.82 21.52 18.31 18.14 17.97 17.82 17.67 28.91 28.91 28.95 LOG (PRESSURE 1 NT/M2) 13.034 13.120 13.128 -1,193 -1,344 -1,6491 -1,632 -1,768 -.732 -.886 -1.040 ~2.829 ~2.939 -4.610 m4.67l -3.561 -4.42] 15.424 115.284 115.284 115.217 115.088 115.026 14.965 14.846 14.789 14.732 14.676 14.621 18.326 17.993 17.720 17.494 17.302 17.137 16.994 16.867 16.653 16.134 15.921 15.825 15.826 15.737 15.553 LOG(N(A) LOG(N(HE) LOG(N(H) LOG(N /M3) /M3) /M3) /M3) 11.214 11.127 11.057 11.000 10.940 10.864 10.864 10.835 10.809 10.767 10.749 10.720 10.720 10.696 10.686 10.668 10.668 10.653 10.639 10.633 10.633 11,327 12.685 12.672 12.659 12.647 12.634 12.864 12.846 12.797 12.782 12.767 12.753 12.739 12.725 14.573 14.418 14.263 13.952 13.796 13.799 13.739 13,052 3,013 12.927 12,904 12,883 3.098 12.980 12,952 2.813 12.747 12.577 12.415 12.260 12.111 11.965 11.412 11.279 11.148 10.888 10.760 10.633 10.507 10.382 10.257 10.133 17.8269 117.8569 117.859
117.859 117.8 14,405 14,205 14,026 13,865 13,718 2.929 16.014 15.569 15.201 1,547 14.894 14,632 11.017 LOG (N (O) 17.348 117.157 116.971 116.805 116.662 116.538 116.729 116.333 116.247 15.671 15.6738 15.6693 15.6738 15.473 15.473 15.288 15.230 15.173 15.062 15.008 14.955 14.902 14.850 14.798 14.747 14.697 14.646 14.596 14.546 17.645 17.685 17.686 17.664 17.597 17.538 17.479 TEMP LOG(N(NZ) LOG(N(02) K /M3) 117-6-985 116-985 116-985 116-162 116-969 116-649 117-649 117-989 117-989 117-989 117-989 14.889 14.582 14.582 14.9462 14.086 18.069 19,170 19,009 18,643 18,642 18,498 18,322 18,147 17,969 17,603 15.275 13.830 13.607 13.608 13.698 13.286 13.181 13.077 12.975 12.571 12.671 12.571 12.471 12.372 15.051 14.0552 14.0553 14.0553 14.0553 14.0573 15.0573 15.0573 15.0573 15.0573 15.0573 15.0573 15.0573 15.0573 14.121 14.033 13.946 13.858 13.772 16,339 16,155 15,994 17.586.01.17.3586.01.17.3586.01.17.3586.01.14588.01.1458.0188.0188.01880.01880.01880.01880.01880.01880.01880.01880.01880.01880.01880.01880.018 199.746 199.746 199.7436 199.125 199.125 189.940 189.811 189.811 189.859 923.2 1019.2 1099.0 1164.7 1218.7 1299.4 1329.4 1354.3 1374.9 254.2 388.4 461.6 555.6 608.5 678.9 746.2 809.5 868.6 188.0 188.1 188.1 189.7 191.7 195.0 200.2 208.1 219.3 263.0 HE I GHT KM EXOSPHERIC TEMPERATURE = 1500 K | LOG (DEN
KG/M3) | 11111111111111111111111111111111111111 | 112.05.00
112.05.00
112.05.00
112.05.00
112.05.00
112.05.00
112.05.00
112.05.00
112.05.00
112.05.00
112.05.00
112.05.00 | 11111111111111111111111111111111111111 | 4444 44400000000 | |----------------------------|--
--|---|--| | DENSITY
KG/M3 | 7.24
7.24
7.24
7.24
7.24
7.24
7.24
7.24 | 74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74.00
74 | 11.0.2.2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4 | 00000 | | DENSITY
SCALE HT
KM | 76.75
80.83
80.83
82.87
84.51
84.51
89.20
90.60 | 93.23
94.50
95.74
95.74
96.97
99.76
100.76
103.52 | 106.60
1008.30
1008.30
1112.11
1116.30
1116.80
1125.69
125.69
125.69
125.69
140.05
153.80
171.06
171.06
171.06 | 276,83
3419,24
342,64
342,64
4470,34
4470,34
552,83
552,83
552,83
664,44
667,84 | | MEAN
MCL WT | 117.
116.
116.
116.
116.
116.
116.
116. | 11111111111111111111111111111111111111 | 1111122.
10011111122.
1001111111122.
1001111111122.
1001111111111 | 4444 wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww | | LOG
(PRESSURE
NT/M2) | 6 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | ** 66.215
** 66.215
** 66.311
** 66.479
** 66.659
** 66.710
** 66.710 | **6*********************************** | 00 24444688 | | LOGIN |
14.513
14.501
14.004
14.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11.006
11 | 13.547
13.460
13.340
13.207
13.107
13.107
12.907
12.907
12.8095 | 12.5.583
112.5.583
112.5.583
112.5.583
112.5.324
112.5.324
112.5.325
113.5.33
111.6933
111.791
111.791 | | | LOG(N(H) | 10.617
10.5599
10.5591
10.5591
10.5547
10.5547
10.554 | 100.534
100.534
100.532
100.526
100.520
100.509
100.609 | 10°488
10°445
10°4475
10°4449
10°4449
10°4449
10°4449
10°449
10°449
10°400
10°400
10°338 | | | LOG(N(HE)
/M3) | 12.609
12.564
12.560
12.535
12.611
12.488
12.441
12.411 | 12,371
12,349
12,326
12,304
12,281
12,281
12,237
12,237
12,215 | 12.150
12.128
12.004
12.005
12.005
12.002
12.002
11.982
11.961
11.861
11.811
11.811
11.811 | | | LDG (N (A)
7/43) | 0.000000000000000000000000000000000000 | 7.4.16
7.186
6.9464
6.518
6.296 | | | | LOG (N (O) | 14, 354
14, 354
14, 253
14, 253
14, 262
13, 864
13, 688
13, 688 | 13.504
13.504
13.323
13.234
13.144
12.968
12.793
12.793 | 12.620
12.535
12.535
12.365
12.365
12.197
12.031
11.867
11.267
11.267
11.267
11.267 | 10.503
10.310
10.310
10.310
9.350
9.250
9.250
9.250
9.250
7.350
7.350
7.058
6.350
7.058 | | LOG (N (02) | 12.176
11.981
11.789
11.597
11.607
11.0218
11.031
10.865
10.660 | 10.293
10.112
9.931
9.752
9.574
9.297
9.297
9.298 | 68 88 88 88 88 88 88 88 88 88 88 88 88 8 | | | LOG (N (NZ) | 13.600
13.260
13.260
13.093
12.761
12.597
12.434
12.272 | 11.951
11.951
11.634
11.321
11.10.166
10.858 | 1100.254
1100.254
1100.254
1100.254
1100.254
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
1100.256
110 | 0 W O O O O O O O O O O O O O O O O O O | | TEMP LC | 1485.8
1485.5
1487.8
1491.0
1492.2
1493.2
1494.1
1494.8 | 1495,9
1496,3
1497,0
1497,0
1497,6
1497,8
1498,0
1498,0 | 1498.5
1498.6
1498.7
1499.8
1499.8
1499.8
1499.5
1499.5
1499.6
1499.6
1499.6
1499.6 | • • • • • • • • • • • • • • • • • • • | | HE I GHT
KM | 44440000000000000000000000000000000000 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 8820
8840
9980
9980
1000
11100
11250 | W44W | EXOSPHERIC TEMPERATURE = 1600 K | HEIGHT
KM | TEMP
K | LOG (N (N2)
/M3) | LOG(N(02)
/M3) | LOG(N(O)
/M3) | LOG(N(A)
/M3) | LOG(N(HE)
/M3) | LOG (N(H)
/M3) | LOG(N
/M3) | LOG
(PRESSURE
NT/M2) | MEAN
MOL WT | DENSITY
SCALE HT
KM | DENSITY
KG/M3 | LOG (DEN
KG/M3) | |--------------|-----------|---------------------|-------------------|------------------|------------------|-------------------|-------------------|---------------|----------------------------|----------------|---------------------------|------------------|--------------------| | 90 | 188.0 | 19.746 | 19,170 | 17.390 | 17.824 | 14.573 | | 19.854 | 732 | 28.91 | 5.63 | 3.43E-06 | -5.465 | | 92 | 188.1 | | | 17.547 | 17.669 | 14.418 | | 19.700 | 886 | 28.85 | 5.58 | 2.40E-06 | | | 94 | 188.7 | | | 17.645 | 17.514 | 14.263 | | 19.545 | -1.040 | 28.76 | 5.54 | 1.67E-06 | -5.776 | | 96 | 189.8 | 19.281 | 18,672 | 17.685 | 17.359 | 14.108 | | 19.389 | -1.193 | 28.65 | 5.51 | 1.17E-06 | -5.933 | | 98 | 191.8 | | 18.498 | 17.686 | 17.203 | 13.952 | | 19.234 | -1.343 | 28.52 | 5.51 | 8.11E-07 | -6.091 | | 100 | 195.2 | 18,969 | 18.322 | 17.663 | 17.047 | 13.796 | | 19.079 | -1.491 | 28.36 | 5.60 | 5.64E-07 | -6.248 | | 102 | 200.6 | | 18.147 | 17.597 | 16.835 | 13.769 | | 18.926 | -1.632 | 28.21 | 5.58 | 3.95E-07 | -6.404 | | 104 | 208.7 | 18.664 | 17.969 | 17.537 | 16.624 | 13.739 | | 18.773 | -1.768 | 28.03 | 5.59 | 2.76E-07 | -6.559 | | 106 | 220.2 | 18.511 | 17.788 | 17,478 | 16.415 | 13.706 | | 18.621 | -1.896 | 27.81 | 5.62 | 1.93E-07 | -6.714 | | 108 | 236.0 | 18,359 | 17.603 | 17.416 | 16.211 | 13.670 | | 18.471 | -2.016 | 27.56 | 5.70 | 1.36E-07 | | | 110 | 256.2 | | 17.416 | 17.346 | 16.015 | 13.631 | | 18.325 | -2.126 | 27.30 | 5.88 | 9.59E-08 | -7.018 | | 115 | 321.5 | | 16.985 | 17.155 | 15.571 | 13.536 | | 17,993 | -2.360 | 26.71 | 7.01 | 4.36E-08 | -7.360 | | 120 | 394.3 | | 16.654 | 16.969 | 15.206 | 13.453 | | 17.721 | -2.543 | 26.26 | 8.63 | 2.29E-08 | -7.640 | | 125 | 469.6 | | 16,390 | 16.804 |
14.901 | 13.383 | | 17,496 | -2.693 | 25.91 | 10.24 | 1.35E-08 | -7.871 | | 130 | 545.8 | | 16.169 | 16.661 | 14.642 | 13.323 | | 17.305 | -2.818 | 25.60 | 12.01 | 8.59E-09 | -8.066 | | 135 | 621.0 | | 15.978 | 16.537 | 14.417 | 13.271 | | 17.142 | -2.925 | 25.32 | 13.85 | 5.83E-09 | -8,235 | | 140 | 694.1 | | 15.810 | 16.429 | 14.220 | 13.226 | | 16.999 | -3.019 | 25.05 | 15.75 | 4.15E-09 | -8.381 | | 145 | 764.4 | | 15.660 | 16.334 | 14.043 | 13.187 | 11 0/0 | 16.874 | -3.103 | 24.81 | 17.71 | 3.08E-09 | -8.511 | | 150
155 | 831.1 | | 15.526 | 16.248 | 13.885 | 13.152 | 11.263 | 16.762 | -3.179 | 24.57 | 19.71 | 2.36E-09 | -8.628 | | | 893.8 | - | 15.404 | 16.171 | 13,740 | 13.121 | 11.203 | 16.661 | -3.248 | 24.35 | 21.75 | 1.85E-09 | -8,732 | | 160 | 952.3 | | 15.291 | 16,102 | 13.607 | 13.094 | 11.150 | 16.569 | -3.312 | 24.14 | 23.80 | 1.49E-09 | -8.828 | | 170 | 1056.5 | | 15.091 | 15.979 | 13.368 | 13.046 | 11.062 | 16.408 | -3.428 | 23.73 | 27.91 | 1.01E-09 | -8.996 | | 180 | 1144.4 | | 14.916 | 15.874 | 13.157 | 13.007 | 10.992 | 16.270 | -3.532 | 23.36 | 31.91 | 7.22E-10 | -9.142 | | 190 | 1217.6 | | 14.758 | 15.781 | 12.967 | 12.974 | 10.934 | 16.148 | -3.626 | 23.00 | 35.73 | 5.37E-10 | -9.270 | | | 1278.3 | 15.741 | 14.613 | 15.698 | 12.792 | 12.946 | 10.874 | 16.039 | -3.715 | 22.66 | 39.36 | 4.11E-10 | -9.386 | | 210 | 1328.4 | 15.621 | 14.478 | 15.623 | 12.628 | 12.920 | 10.832 | 15.939 | -3.798 | 22.33 | 42.64 | 3.22E-10 | -9.492 | | 220 | 1369.9 | 15.509 | 14.351 | 15.553 | 12,472 | 12.898 | 10.797 | 15.847 | -3.876 | 22.02 | 45.73 | 2.57E-10 | -9.590 | | 230
240 | 1404.1 | 15.401
15.299 | 14.231 | 15.487 | 12.324 | 12.877 | 10.766 | 15.761 | -3.952 | 21.71 | 48.56 | 2.08E-10 | -9.682 | | 250 | 1456.2 | | 14.114 | 15.424 | 12.181
12.043 | 12.859 | 10.740 | 15.680 | -4.024 | 21.42 | 51.19 | 1.70E-10 | -9.769 | | | | - | 14.002 | 15.365 | | 12.841 | 10.717 | 15.603 | -4.094 | 21.13 | 53.60 | 1.41E-10 | -9.852 | | 260 | 1475.9 | 15.103 | 13.893 | 15.307 | 11.908 | 12.825 | 10.697 | 15.529 | -4.162 | 20.85 | 55.85 | 1.17E-10 | -9.931 | | | 1492.5 | 15.009 | 13.786 | 15.251 | 11.776 | 12.809 | 10.679 | 15.458 | -4.228 | 20.59 | 57.93 | 9.82E-11 | -10.008 | | | 1506.4 | 14.917 | 13.682 | 15.197 | 11.647 | 12.794 | 10,663 | 15.390 | -4.292 | 20.33 | 59.89 | 8.29E-11 | -10.081 | | | 1518.1 | 14.827 | 13.579 | 15.144 | 11.519 | 12.779 | 10.649 | 15.324 | -4.354 | 20.08 | 61.73 | 7.03E-11 | -10.153 | | | 1528.1 | 14,738 | 13.478 | 15.092 | 11.394 | 12.765 | 10.636 | 15.260 | -4.416 | 19.84 | 63.49 | 5.99E-11 | -10.222 | | 310 | 1536.6 | 14.650 | 13.378 | 15.041 | 11.270 | 12.751 | 10.624 | 15.198 | -4.476 | 19.61 | 65.15 | 5.13E-11 | -10.290 | | | 1543.9 | 14.564 | 13.280 | 14.991 | 11.147 | 12.738 | 10.614 | 15.137 | -4.535 | 19.39 | | 4.41E-11 | -10.356 | | 330 | 1550.2 | 14.478 | 13.182 | 14.941 | 11.026 | 12.725 | 10.604 | 15.077 | -4.592 | 19.18 | 68.29 | 3.80E-11 | -10,420 | | 340 | 1555.6 | 14.393 | 13.085 | 14.892 | 10.905 | 12.712 | 10.595 | 15.019 | -4.649 | 18.97 | 69.78 | 3.29E-11 | -10.483 | | 350 | 1560.3 | 14.309 | 12,989 | 14,843 | 10.786 | 12.700 | 10.587 | 14.962 | -4.705 | 18.78 | 71.21 | 2.85E-11 | -10.544 | | 360 | 1564.3 | 14,225 | 12.894 | 14.795 | 10.667 | 12.687 | 10.579 | 14.906 | -4.760 | 18.59 | 72.60 | 2.48E-11 | -10,605 | | 370 | 1567.9 | 14.143 | 12.799 | 14.747 | 10.549 | 12.675 | 10.572 | 14.851 | -4.814 | 18.42 | 73.96 | 2-17E-11 | -10.664 | | 380 | 1571.0 | 14.060 | 12.705 | 14.700 | 10.432 | 12.663 | 10.566 | 14.796 | -4.867 | 18.25 | 75.28 | 1.90E-11 | -10.722 | | | 1573.7 | 13.978 | 12.612 | 14.653 | 10.316 | 12.651 | 10.559 | 14.743 | -4.920 | 18.09 | 76.56 | 1.66E-11 | -10.779 | | 400 | 1576.1 | 13.897 | 12,519 | 14.606 | 10,200 | 12.639 | 10.553 | 14.690 | -4.972 | 17.93 | 77.80 | 1.46E-11 | -10.836 | c | HE I GHT
KM | TEMP
K | LOG (N (N2)
/M3) | LOG(N(O2)
/M3) | LUG(N(O)
/M3) | LOG(N(A)
/M3) | LOG(N(HE) | LOG (N(H) | LOG(N
/M3) | LOG
(PRESSURE
NT/M2) | | DENSITY
SCALE HT
KM | DENSITY
KG/M3 | LOG(DEN
KG/M3) | |----------------|-----------|---------------------|-------------------|------------------|------------------|------------------|------------------|------------------|----------------------------|----------------|---------------------------|----------------------|--------------------| | 420 | 1580.2 | 13.735 | 12,335 | 14,513 | 9.970 | 12.615 | 10.543 | 14.587 | -5.074 | 17.65 | 80.19 | 1.13E-11 | -10,946 | | 440 | 1583.3 | | 12.152 | 14.421 | 9.742 | 12.592 | 10.533 | 14.487 | -5.173 | 17.39 | 82.46 | 8.86E-12 | -11.052 | | 460 | 1585.9 | | 11.971 | 14.331 | 9.516 | 12.569 | 10.524 | 14.389 | -5.271 | 17.16 | 84.61 | 6.98E-12 | -11,156 | | 480 | 1588.0 | | 11,791 | 14,240 | 9.292 | 12.546 | 10.516 | 14.293 | -5.366 | 16.94 | 86.65 | 5.52E-12 | -11.258 | | 500 | 1589.7 | | 11,613 | 14,151 | 9.070 | 12,523 | 10.510 | 14.199 | -5.460 | 16.75 | 88.57 | 4.40E-12 | -11.357 | | 520 | 1591.0 | | 11,436 | 14.062 | 8.849 | 12.501 | 10.503 | 14.106 | -5.552 | 16.57 | 90.39 | 3.51E-12 | -11.454 | | 540 | 1592.2 | 12.794 | 11.260 | 13,974 | 8.629 | 12.479 | 10.497 | 14.016 | -5.642 | 16.40 | 92.10 | 2.82E-12 | -11.549 | | 560 | 1593.2 | 12.641 | 11.085 | 13.887 | 8.411 | 12.457 | 10.490 | 13.927 | -5.731 | 16.23 | 93.72 | 2.28E-12 | -11.643 | | 580 | 1594.0 | | 10.912 | 13.800 | 8.195 | 12.435 | 10.484 | 13.839 | -5.819 | 16.08 | 95.26 | 1.84E-12 | -11.735 | | 600 | 1594.7 | 12.338 | 10,740 | 13.714 | 7.980 | 12,413 | 10.477 | 13.753 | -5.905 | 15.92 | 96.74 | 1.50E-12 | -11.825 | | 620 | 1595.3 | | 10.568 | 13,628 | 7.766 | 12.392 | 10.471 | 13.668 | -5.989 | 15.77 | | 1.22E-12 | -11.914 | | 640 | 1595.8 | | 10.398 | 13,543 | 7.553 | 12.371 | 10.465 | 13.584 | -6.073 | 15,61 | 99.52 | 9.95E-13 | -12,002 | | 660 | 1596.2 | | 10,229 | 13,458 | 7.342 | 12.349 | 10.460 | 13.502 | -6.155 | 15.44 | 100.84 | 8.15E-13 | -12.089 | | 680 | 1596.6 | | 10.061 | 13.374 | 7.132 | 12.328 | 10.454 | 13,421 | -6.235 | 15.27 | 102.13 | 6.69E-13 | -12.174 | | 700 | 1596.9 | | 9.894 | 13.290 | 6.924 | 12.307 | 10.448 | 13.342 | -6.315 | 15.09 | 103.41 | 5.51E-13 | -12.259 | | 720 | 1597.2 | | 9.727 | 13.207 | 6.716 | 12.287 | 10.443 | 13.264 | -6.393 | 14.90 | 104.69 | 4.55E-13 | -12.342 | | 740
760 | 1597.5 | | 9,562
9,398 | 13.125
13.042 | 6.510
6.305 | 12.266
12.245 | 10.437
10.432 | 13.188 | -6.469
-6.544 | 14.70
14.48 | 105.97
107.28 | 3.76E-13
3.12E-13 | -12.425
-12.506 | | 780 | 1597.9 | | 9.235 | 12,961 | 6.101 | 12.225 | 10,427 | 13.039 | -6.617 | 14.24 | 108.61 | 2.59E-13 | -12.587 | | 800 | 1598.1 | | 9.072 | 12.880 | 0,101 | 12.204 | 10.421 | 12.968 | -6.689 | 13.99 | 110.02 | 2.16E-13 | -12.666 | | | | | | - | | | | | | _ | - | - | | | 820 | 1598.2 | | 8.911 | 12.799 | | 12.184 | 10.416 | 12.898 | -6.758 | 13.71 | 111.44 | 1.80E-13 | -12.745 | | 840 | 1598.4 | | 8.750 | 12,719 | | 12.164 | 10.411 | 12.A30 | -6.827 | 13.42 | 112.94 | 1.51E-13 | -12.822 | | 860 | 1598.5 | | 8.591 | 12.639 | | 12.144 | 10.406 | 12.764 | -6.893 | 13.11 | 114.54 | 1.26E-13 | -12.899 | | 880 | 1598.6 | | 8.432 | 12.559 | | 12.124 | 10.401 | 12,699 | -6.957 | 12.78 | 116.24 | 1.06E-13 | -12.974 | | 900 | 1598.7 | | 8.274 | 12.481 | | 12.105 | 10.396 | 12.637 | -7.019 | 12.44 | 118.06 | 8.95E-14 | -13.048 | | 920
940 | 1598.8 | | 8.117
7.961 | 12,402
12,324 | | 12.085
12.065 | 10.391 | 12.577 | -7.079
-7.137 | 12.07
11.70 | 120.03
122.16 | 7.57E-14
6.42E-14 | -13.121
-13.193 | | | 1599.0 | | 7.806 | 12.246 | | 12.046 | 10.381 | 12,463 | -7.193 | 11.31 | 124.47 | 5.46E-14 | -13.263 | | 980 | 1599.0 | | 7.652 | 12.169 | | 12.027 | 10.376 | 12,410 | -7.247 | 10.91 | 126.99 | 4.65E-14 | -13.332 | | 1000 | 1599.1 | | 7.498 | 12.092 | | 12.007 | 10.371 | 12.358 | -7.298 | 10.51 | 129.74 | 3.98E-14 | -13,400 | | | | | | _ | | - | | | | | | | | | 1050 | 1599.2 | | 7.118 | 11.902 | | 11.960 | 10.359 | 12.239 | -7.417 | 9.51 | 137.81 | 2.745-14 | -13.562 | | 1100 | 1599.3 | | 6.743 | 11.715 | | 11.913 | 10.347 | 12.134 | -7.522 | 8.54 | 147.97 | 1.93E-14
1.39E-14 | -13.715 | | 1150
1200 | 1599.4 | | 6.373
6.008 | 11.530
11.347 | | 11.867
11.821 | 10.335
10.324 | 12.040
11.957 | -7.616
-7.699 | 7.66
6.88 | 160.70
176.46 | 1.04E-14 | -13.856
-13.985 | | 1250 | 1599.6 | | 0.008 | 11.167 | | 11.776 | 10.313 | 11.957 | -7.773 | 6.23 | 195.68 | 7.91E-15 | -14.102 | | 1300 | 1599.6 | | | 10.990 | | 11.731 | 10.301 | 11.817 | -7.839 | 5.70 | 218.52 | 6.21E-15 | -14,207 | | 1350 | 1599.7 | | | 10.814 | | 11.688 | 10.290 | 11.757 | -7.899 | 5.27 | 244.87 | 5.00E-15 | -14.301 | | 1400 | 1599.7 | | | 10.641 | | 11.644 | 10.279 | 11.702 | -7.954 | 4.93 | 274.24 | 4.12E-15 | -14.385 | | 1450 | 1599.7 | | | 10,470 | | 11.601 | 10.268 | 11.651 | -8.005 | 4.67 | 305.84 | 3.47E-15 | -14.460 | | 1500 | 1599.8 | | | 10,301 | | 11.559 | 10.258 | 11.603 | -8.053 | 4.47 | 338.57 | 2.97E-15 | -14.527 | | 1600 | 1599.8 | ì | | 9.970 | | 11.476 | 10.237 | 11,513 | -8.143 | 4.19 | 402.66 | 2.27E-15 | -14.644 | | 1700 | 1599.8 | | | 9.647 | | 11.396 | 10.217 | 11,431 | -8.225 | 4.02 | 459.35 | 1.80E-15 | -14.745 | | 1800 | 1599.9 | | | 9.332 | | 11,317 | 10.197 | 11,353 | -8.303 | 3.91 | 505.55 | 1.46E-15 | -14.835 | | 1900 | 1599.9 | | | 9.025 | | 11.240 | 10.177 | 11.278 | -8.377 | 3.83 | 542.36 | 1.212-15 | -14.918 | | 2000 | 1599.9 | | | 8.725 | | 11.165 | 10.158 | 11,207 | -8.449 | 3.77 | 572.01 | 1.01E-15 | -14,996 | | 2100 | 1599.9 | | | 8,432 | | 11.092 | 10.140 | 11.138 | -8.517 | 3.73 | 596.73 | 8.51E-16 | -15.070 | | 2200 | 1599.9 | | | 8.146 | | 11.020 | 10.122 | 11.072 | -8.584 | 3.68 | 618.70 | 7.22E-16 | -15.142 | | 2300 | 1599.9 |) | | 7.866 | | 10.950 | 10.104 | 11.008 | -8.648 | 3.64 | 638.99 | 6.16E-16 | -15,211 | | 2400 | 1599.9 |) | | 7,593 | | 10.882 | 10.087 | 10,947 | -8.709 | 3.59 | 658.24 | 5.28E-16 | -15.278 | | 2500 | 1600.0 |) | | 7.326 | | 10.815 |
10.070 | 10.887 | -8.769 | 3,55 | 677.32 | 4.54E-16 | -15.343 | ž | HE I GHT
KM | TEMP
K | LOG (N (N2)
/M3) | LOG (N (O2)
/M3) | LOG(N(O)
/M3) | LOG (N (A)
/M3) | LOG (N (HE)
/M3) | LOG (N (H)
/M3) | LOG(N
/M3) | LOG
(PRESSURE
NT/M2) | MEAN
MOL WT | DENSITY
SCALE HT
KM | DENSITY
KG/M3 | LOG (DEN
KG/M3) | |----------------|-----------|---------------------|---------------------|------------------|--------------------|---------------------|--------------------|------------------|----------------------------|----------------|---------------------------|----------------------|--------------------| | 90 | 188.0 | 19.746 | 19.170 | 17,390 | 17.824 | 14.573 | | 19.854 | ~• 732 | 28.91 | 5.63 | 3.43E-06 | -5.465 | | 92 | 188.1 | 19.592 | 19,009 | 17.547 | 17,669 | 14.418 | | 19.700 | 886 | 28.85 | 5.58 | 2.40E-06 | -5.620 | | 94 | 188.7 | 19.436 | 18.843 | 17.645 | 17.514 | 14.263 | | 19.545 | -1.040 | 28.76 | 5,54 | 1.67E-06 | -5.776 | | 96 | 189.9 | | 18.672 | 17.685 | 17.358 | 14.107 | | 19.389 | -1.192 | 28.65 | 5.51 | 1.17E-06 | -5.934 | | 98 | 192.0 | 19.125 | 18.497 | 17.686 | 17.202 | 13.951 | | 19.233 | -1.343 | 28,52 | 5.51 | 8.10E-07 | -6.091 | | 100 | 195.6 | 18,969 | 18.321 | 17,663 | 17.047 | 13.796 | | 19.078 | -1.490 | 28.36 | 5.59 | 5.64E-07 | -6.249 | | 102 | 201.2 | 18,816 | 18.146 | 17,596 | 16.834 | 13.768 | | 18.925 | +1.631 | 28.21 | 5.57 | 3.94E-07 | -6.404 | | 104 | 209.7 | | 17.968 | 17.536 | 16,623 | 13.737 | | 18.772 | -1.766 | 28.03 | 5.58 | 2.75E-07 | -6.560 | | 106 | 221.9 | 18.509 | 17.787 | 17,477 | 16.415 | 13.704 | | 18.620 | -1.894 | 27.81 | 5.61 | 1.93E-07 | -6.716 | | 108 | 238.5 | 18,357 | 17.602 | 17.413 | 16.211 | 13.667 | | 18.470 | +2.012 | 27.56 | 5.69 | 1.35E-07 | -6.869 | | 110 | 259.7 | 18,209 | 17.415 | 17.343 | 16.015 | 13.628 | | 18.324 | -2.122 | 27.31 | 5.88 | 9.56E-08 | -7.020 | | 115 | 328,4 | | | 17.151 | 15.574 | 13.531 | | 17.992 | -2.352 | 26.72 | 7.05 | 4.35E-08 | -7.361 | | 120 | 404.9 | | | 16,965 | 15.213 | 13.448 | | 17.722 | -2.531 | 26.29 | 8.72 | 2.30E-08 | -7.638 | | 125 | 484.1 | | | 16.801 | 14.913 | 13.377 | | 17.499 | -2.676 | 25.95 | 10.37 | 1.36E-08 | -7.867 | | 130 | 564.3 | | | 16,659 | 14.658 | 13.317 | | 17.311 | -2.797 | 25.65 | 12.19 | 8.72E-09 | -8.060 | | 135 | 643.7 | | | 16.537 | 14.438 | 13.265 | | 17.150 | -2.901 | 25.38 | 14.06 | 5.95E-09 | -8.225 | | 140 | 721.6 | | | 16.430 | 14.245 | 13.220 | | 17.009 | -2.992. | 25.13 | 15.99 | 4.26E-09 | -8.370 | | 145 | 797.2 | | | 16.335 | 14.073 | 13.181 | | 16.885 | -3.073 | 24.89 | 17.96 | 3.17E-09
2.44E-09 | -8.498 | | 150 | 869.9 | | | 16.250 | 13.918 | 13.145 | 11.150 | 16.775 | -3.146 | 24.67 | 19.99 | 1.92E-09 | -8,613
-8,716 | | 155 | 939.3 | 16.472 | 15.429 | 16.173 | 13.776 | 13.114 | 11.090 | 16.675 | -3,212 | 24.46 | 22.06 | | | | 160 | 1005.0 | 16.372 | 15.319 | 16.104 | 13.647 | 13.086 | 11.037 | 16.585 | ~3.273 | 24.26 | 24.16 | 1.55E-09 | -8.810 | | 170 | 1124.7 | 16,196 | 15.124 | 15.982 | 13.415 | 13.037 | 10.948 | 16.426 | -3.383 | 23.89 | 28.42 | 1.06E-09 | -8.976 | | 180 | 1228.4 | 16.042 | 14.954 | 15.878 | 13.213 | 12.997 | 10.876 | 16.290 | -3.481 | 23.54 | 32.67 | 7.62E-10 | -9.118 | | 190 | 1316.7 | 15.905 | 14.802 | 15.787 | 13.031 | 12.963 | 10.817 | 16.171 | -3.570 | 23.21 | 36.85 | 5.71E-10 | -9.243 | | 200 | 1391.2 | 15.782 | 14.664 | 15,706 | 12.865 | 12.934 | 10.756 | 16.065 | -3.652 | 22.90 | 40.89 | 4.41E-10 | -9.355 | | 210 | 1453.6 | | | 15,633 | 12.711 | 12.908 | 10.713 | 15.969 | -3.729 | 22.60 | 44.64 | 3.49E-10 | -9.457. | | 220 | 1505.6 | | | 15,566 | 12.566 | 12.886 | 10.677 | 15,881 | -3.801 | 22.32 | 48.19 | 2.82E-10 | -9.550 | | 230 | 1548.9 | | | 15,503 | 12.429 | 12.866 | 10.645 | 15.799 | -3.871 | 22.04 | 51.48 | 2.30E-10 | -9.638 | | 240 | 1585.0 | | | 15.445 | 12.297 | 12.847 | 10.618 | 15.723 | -3.937 | 21.77 | 54.53 | 1.91E-10 | -9.719 | | 250 | 1615.2 | 15.276 | 14.095 | 15,389 | 12.170 | 12.830 | 10.594 | 15.650 | -4.002 | 21.51 | 57.32 | 1.60E-10 | -9.797 | | 260 | 1640.4 | | | 15,336 | 12.048 | 12.815 | 10.573 | 15.581 | -4.064 | 21.25 | 59.92 | 1.35E-10 | -9.871 | | 270 | 1661.6 | | | 15.284 | 11,928 | 12.800 | 10.554 | 15.515 | -4.124 | 21.00 | 62.32 | 1.14E-10 | -9.942 | | 280 | 1679.5 | | | 15.235 | 11.811 | 12.786 | 10.537 | 15.452 | -4.183 | 20.76 | 64.56 | 9.76E-11 | -10.011 | | 290 | 1694.6 | | | 15,186 | 11.696 | 12.772 | 10.522 | 15.390 | -4.240 | 20.53 | 66.63 | 8.38E-11 | -10.077 | | 300 | 1707.4 | | | 15.139 | 11.583 | 12,759 | 10.509 | 15.331 | -4.297 | 20.31 | 68.60 | 7.23E-11 | -10.141 | | 310 | 1718.4 | | | 15.093 | 11.471 | 12.746 | 10.496 | 15.273 | -4.352 | 20.09 | 70.45
72.22 | 6.26E-11
5.44E-11 | -10,204
-10,264 | | 320 | 1727.7 | | | 15.047 | 11.361 | 12.734 | 10.485 | 15.217 | -4,405
-4,458 | 19.88 | 73.90 | 4.74E-11 | -10,324 | | 330 | 1735.8 | | | 15.002 | 11.252 | 12.722 | 10.475 | 15.162 | | | 75.52 | 4.15E-11 | -10.382 | | 340 | 1742.8 | | | 14.958 | 11.144
11.037 | 12.710
12.699 | 10.466
10.457 | 15.108
15.056 | -4.510
-4.562 | 19.47
19.28 | 77.08 | 3.64E-11 | -10.439 | | 350 | 1748.8 | 14.470 | 13,181 | 14,914 | 11001 | 12.049 | 104437 | 19,096 | -4.302 | • | | _ | | | 360 | 1754.0 | 14,396 | 13.095 | 14.871 | 10,931 | 12.688 | 10.449 | 15.004 | -4.612 | 19.10 | 78.59 | 3.20E-11 | -10.495 | | 370 | 1758.6 | 14,321 | 13,011 | 14.828 | 10.826 | 12.677 | 10,441 | 14.953 | -4.661 | 18.92 | 80.06 | 2.82E-11 | -10.549 | | 380 | 1762.6 | 14,248 | 12.927 | 14.786 | 10,721 | 12.666 | 10.434 | 14.903 | -4.710 | 18.75 | 81.48 | 2.49E-11 | -10,603 | | 390 | 1766.1 | 14.175 | 12.843 | 14.744 | 10,617 | 12.655 | 10.428 | 14.854 | -4.759 | 18.59 | 82.87 | 2.21E-11 | -10.656 | | 400 | 1769.2 | 14,102 | 12.760 | 14,702 | 10.514 | 12.644 | 10.422 | 14.806 | -4.806 | 18.44 | 84.23 | 1.96E-11 | -10.708 | | | | - | - | _ | | | | | | | | | | |------------|--------|--------|----------------|----------|------------|------------------|------------------|---------|--------------------|--------------|---------------------|----------------------|--------------------| | | | | 1.05 (1) (0.01 | 10541101 | 1.06 (N/A) | 1 06 (N/11/5) | LOGINIU | 1.06 (N | LOG
(PRESSURE | | DENSITY
SCALE HT | DENSITY | LOG (DEN | | HEIGHT | | | LOG (N (02) | | LUGINIAI | LOGINIHE | LUGINIHI | LUGIN | NT/M2) | MOL WI | KM | KG/M3 | KG/M3) | | KM | K | /M3) NITMET | | Ni. | | KG/HJ/ | | 4.20 | | 12 050 | 12 504 | 14.619 | 10.308 | 12.623 | 10.410 | 14.712 | -4.899 | 18.14 | 86.85 | 1.55E-11 | -10.810 | | 420 | 1774.4 | | 12.596 | 14.519 | 10.105 | 12.602 | 10.410 | 14.619 | -4.990 | 17.87 | 89.34 | 1.24E-11 | -10,908 | | 440
460 | 1778.5 | | 12.433 | 14.456 | 9.904 | 12.581 | 10.391 | 14.530 | -5.080 | 17.63 | 91.75 | 9.91E-12 | -11.004 | | | 1784.5 | | 12,112 | 14.375 | 9.704 | 12.561 | 10.384 | 14.442 | -5.167 | 17.40 | 94.06 | 7.99E-12 | -11,098 | | 500 | 1786.7 | | 11.953 | 14.296 | 9.506 | 12.541 | 10.377 | 14.356 | -5.252 | 17.19 | 96.25 | 6.47E-12 | -11.189 | | 520 | 1788.5 | | 11.795 | 14.217 | 9.310 | 12.521 | 10.371 | 14.271 | -5.336 | 17.00 | 98.35 | 5.27E-12 | -11.278 | | 540 | 1790.0 | | 11.639 | 14.138 | 9.114 | 12.501 | 10.365 | 14.188 | -5.419 | 16.82 | 100.34 | 4.31E-12 | -11.366 | | 560 | 1791.2 | | 11,483 | 14.061 | 8.921 | 12.482 | 10.358 | 14.107 | -5.500 | 16.65 | 102.26 | 3.54E-12 | -11.451 | | 580 | 1792.3 | | 11.329 | 13.983 | 8.728 | 12.462 | 10.352 | 14,027 | ⇔5 •580 | 16.50 | 104.10 | 2.91E-12 | -11.535 | | 600 | 1793.1 | | 11.176 | 13,906 | 8.537 | 12.443 | 10.346 | 13.948 | ~5.658 | 16.35 | 105.85 | 2.41E-12 | -11.618 | | 620 | 1793.9 | 12.580 | 11.023 | 13.830 | 8.346 | 12.424 | 10.340 | 13.870 | -5.736 | 16.20 | 107.52 | 2.00E-12 | -11.700 | | 640 | 1794.6 | | 10.872 | 13.754 | 8.157 | 12.405 | 10.335 | 13.794 | ~5.812 | 16.07 | 109.13 | 1.66E-12 | -11.780 | | 660 | 1795.1 | | 10,721 | 13,679 | 7.970 | 12.386 | 10.329 | 13.719 | -5.887 | 15.93 | 110.68 | 1.38E-12 | -11.859 | | 680 | 1795.6 | | | 13,604 | 7.783 | 12.367 | 10.324 | 13.645 | -5.961 | 15.79 | 112.18 | 1.16E-12 | -11.937 | | 700 | 1796.0 | | | 13,530 | 7.597 | 12.348 | 10.319 | 13,572 | -6.034 | 15.65 | 113.63 | 9.69E-13 | -12.014 | | 720 | 1796.4 | | | 13,456 | 7.413 | 12.330 | 10.314 | 13.500 | -6.106 | 15.51 | 115.05 | 8.13E-13 | -12.090 | | 740 | 1796.7 | 11,797 | 10.128 | 13,382 | 7,230 | 12.311 | 10.309 | 13.429 | -6.177 | 15.36 | 116.45 | 6.84E-13 | -12.165 | | 760 | 1797.0 | | 9.982 | 13,309 | 7.047 | 12,293 | 10.304 | 13.359 | -6.247 | 15.21 | 117.83 | 5.77E-13 | +12,239 | | 780 | 1797.3 | | | 13.237 | 6.866 | 12.275 | 10.299 | 13.290 | -6.315 | 15.05 | 119.20 | 4.87E-13 | -12.312 | | 800 | 1797.5 | 11.416 | 9,693 | 13,165 | 6.686 | 12.257 | 10.294 | 13.223 | -6.383 | 14.88 | 120.58 | 4.12E-13 | -12.385 | | 820 | 1797.7 | 11,290 | 9.549 | 13,093 | 6.507 | 12,239 | 10.290 | 13,156 | -6.449 | 14.70 | 121.94 | 3.50E-13 | -12.456 | | 840 | 1797.9 | | | 13,021 | 6,329 | 12.221 | 10.285 | 13.091 | -6.514 | 14.50 | 123.32 | 2.97E-13 | -12.527 | | 860 | 1798.1 | | 9.265 | 12,950 | 6,151 | 12.203 | 10.280 | 13.027 | -6.578 | 14.30 | 124.74 | 2.53E-13 | -12.597 | | 880 | 1798.2 | 10.917 | 9.124 | 12,880 | | 12.186 | 10.276 | 12.965 | -6.640 | 14.08 | 126.19 | 2.16E-13 | -12.666 | | 900 | 1798.3 | 10.794 | 8.983 | 12,810 | | 12.168 | 10.271 | 12,903 | -6.702 | 13.85 | 127.69 | 1.84E-13 | -12.735 | | 920 | 1798.5 | 10,672 | 8.844 | 12.740 | | 12.150 | 10.267 | 12.844 | -6.762 | 13.61 | 129.25 | 1.58E-13 | -12.802 | | 940 | 1798.6 | | | 12,671 | | 12,133 | 10.262 | 12.785 | -6.820 | 13.35 | 130.88 | 1.35E-13 | -12.869 | | 960 | 1798.7 | | | 12,602 | | 12.116 | 10.258 | 12.728 | -6.877 | 13.08 | 132.60 | 1.16E-13
1.00E-13 | -12.935 | | 980 | 1798.8 | | | 12.533 | | 12.099 | 10.254 | 12.673 | -6.932 | 12.80 | 134.40 | 8.62E-14 | -13.000
-13.064 | | 1000 | 1798.8 | 10.190 | 8.293 | 12,465 | | 12.082 | 10.249 | 12.619 |
-6.986 | 12.50 | 136.32 | 8.0214 | =13,004 | | 1050 | 1799.0 | | | 12,296 | | 12.039 | 10.238 | 12.491 | -7.114 | 11.70 | 141.64 | 6.02E-14
4.26E-14 | -13.221
-13.371 | | 1100 | 1799.2 | | | 12,129 | | 11.998 | 10.228 | 12.373 | -7.232 | 10.86 | 147.98 | 3.06E-14 | ~13.514 | | 1150 | 1799.3 | | | 11.965 | | 11.956 | 10.217 | 12.266 | - 7.339 | 10.00 | 155.61
164.82 | 2.24E-14 | -13.650 | | 1200 | 1799.4 | | | 11.802 | | 11.916 | 10.207 | 12.169 | -7.436 | 9.15
8.34 | 176.03 | 1.67E-14 | -13.777 | | 1250 | 1799.5 | | | 11.642 | | 11.876 | 10.197 | 12.081 | -7.523 | 7.60 | 189.56 | 1.27E-14 | -13.896 | | 1300 | 1799.5 | | | 11.484 | | 11.836 | 10.187 | 12.003 | -7.602
-7.673 | 6.94 | 205.75 | 9.86E-15 | -14.006 | | 1350 | 1799.6 | | | 11.328 | | 11.797 | 10.177
10.167 | 11.452 | -7.737 | 6.37 | 224.87 | 7.81E-15 | -14.107 | | 1400 | 1799.6 | | | 11.174 | | 11.759 | 10.158 | 11.810 | -7.795 | 5.89 | 247.12 | 6.32E-15 | -14,200 | | 1450 | 1799.7 | | | 11.022 | | 11.721
11.683 | 10.148 | 11.756 | -7.848 | 5.50 | 272.46 | 5.21E-15 | -14.283 | | 1500 | 1799.7 | 7.403 | | 10.872 | | 11.003 | 104140 | 11.130 | | | - | | | | 1600 | 1799.6 | 6.887 | , | 10,578 | | 11.610 | 10.130 | 11.661 | -7.944 | 4.91 | 331.17 | | -14.428 | | 1700 | 1799.8 | 6.385 | i | 10.291 | | 11.538 | 10.112 | 11.577 | -8.028 | 4.52 | 396.70 | 2.83E-15 | -14.548 | | 1800 | 1799.8 | 3 | | 10,011 | | 11.468 | 10.094 | 11.500 | -8.105 | 4.27 | 462.49 | 2.24E-15 | -14.649 | | | 1799.9 | | | 9.738 | | 11.399 | 10.077 | 11.428 | -8.176 | 4.11 | 523.14 | 1.83E-15 | -14.737 | | | 1799.9 | | | 9.471 | | 11.333 | 10.060 | 11.361 | -8.244 | 4.01 | 575.57 | 1.53E-15 | -14.816 | | | 1799.9 | | | 9.211 | | 11.267 | 10.043 | 11.296 | -8.308 | 3.93 | 619.30 | 1.29E-15 | -14.889 | | 2200 | 1799.9 | | | 8.956 | | 11.204 | 10.027 | 11.234 | -8.371 | 3.88 | 655.94 | 1.10E-15
9.52E-16 | -14.957
-15.021 | | 2300 | 1799.9 | | | 8,708 | | 11.142 | 10.012 | 11.174 | -8.430 | 3.84 | 687.05 | 8.25E-16 | -15.021 | | | 1799.9 | | | 8.465 | | 11.081 | 9.996 | 11.116 | -8.488 | 3.80 | 714.06 | 7.19E-16 | -15,143 | | 2500 | 1799.9 | 7 | | 8,228 | | 11.022 | 9.981 | 11.060 | -8.545 | 2.11 | 738.63 | 1 + 1 3 - 10 | 4130143 | | | | | | | | | | | | - | | • | | |--------|--------|--------|------------|--------|--------|--------|--------|--------|-----------|--------|----------|------------|----------| | | | | | | | | | | LOG | | DENSITY | D=115 ==14 | | | HEIGHT | | | LOG (N(02) | | | | | | (PRESSURE | MOL WT | SCALE HT | DENSITY | LOG (DEN | | KM | K | /M3) NT/M2) | | KM | KG/M3 | KG/M3) | | | | | | | | | | | | | | | | | 90 | 188.0 | 19.746 | 19.170 | 17.390 | 17.824 | 14.573 | | 19.854 | 732 | 28.91 | 5.63 | 3.43E-06 | -5.465 | | 92 | 188.2 | | | 17.547 | 17.669 | 14.418 | | 19.700 | 886 | 28.85 | 5.58 | 2.40E-06 | -5.620 | | 94 | 188.7 | | | 17.645 | 17.514 | 14.263 | | 19.545 | -1.040 | 28.76 | 5.53 | 1.67E-06 | -5.776 | | 96 | 190.0 | | | 17.685 | 17.358 | 14.107 | | 19.389 | -1.192 | 28.65 | 5.51 | 1.16E-06 | -5.934 | | 98 | 192.2 | | 18.497 | 17.686 | 17.202 | 13.951 | | 19.233 | -1.343 | 28.52 | 5.50 | 8.10E-07 | -6.092 | | 100 | 195.9 | | 18.321 | 17.662 | 17.046 | 13.795 | | 19.078 | -1.490 | 28.36 | 5.58 | 5.63E-07 | -6.249 | | 102 | 201.8 | | 18.145 | 17.595 | 16.834 | 13.767 | | 18.924 | -1.631 | 28.21 | 5.57 | 3.93E-07 | -6.405 | | 104 | 210.7 | | | 17.535 | 16,623 | 13.736 | | 18.771 | -1.765 | 28.03 | 5.58 | 2.75E-07 | -6.561 | | 106 | 223.4 | | | 17.475 | 16.414 | 13.702 | | 18.619 | -1.892 | 27.81 | 5.60 | 1.92E-07 | -6.717 | | 108 | 240.7 | | | 17.411 | 16.211 | 13.665 | | 18.469 | -2.010 | 27.57 | 5.69 | 1.35E-07 | -6.871 | | | 2400, | | | | | | | | | | | | • | | 110 | 262.8 | 18,207 | 17.415 | 17.340 | 16.015 | 13.626 | | 18.323 | -2.118 | 27.31 | 5.88 | 9.53E~08 | -7.021 | | 115 | 334.5 | 17.868 | 16.987 | 17,147 | 15.576 | 13.527 | | 17.991 | -2.345 | 26.73 | 7.08 | 4.35E-08 | -7.362 | | 120 | 414.3 | 17.590 | 16.660 | 16,962 | 15.219 | 13.443 | | 17.723 | -2.520 | 26.31 | 8.79 | 2.31E-08 | -7.637 | | 125 | 496.9 | 17.359 | 16.403 | 16.798 | 14.923 | 13.372 | | 17.502 | -2,662 | 25.98 | 10.48 | 1.37E-08 | -7.863 | | 130 | 580.6 | 17,163 | 16.188 | 16,658 | 14.673 | 13.312 | | 17.316 | -2.780 | 25.70 | 12.34 | 8.83E-09 | -8.054 | | 135 | 663.8 | 16.994 | 16.003 | 16,536 | 14.456 | 13.260 | | 17.157 | -2.881 | 25.43 | 14.24 | 6.06E-09 | -8.218 | | 140 | 745.8 | 16.846 | 15.841 | 16.430 | 14.267 | 13.215 | | 17.018 | -2.970 | 25.19 | 16.19 | 4.36E-09 | -8.361 | | 145 | 826.0 | 16,714 | 15.697 | 16,336 | 14.098 | 13,175 | | 16.895 | -3.048 | 24.97 | 18.18 | 3.26E-09 | -8.487 | | 150 | 904.0 | 16.596 | 15.567 | 16,251 | 13.945 | 13.139 | 11.051 | 16.786 | -3.118 | 24.76 | 20.22 | 2.51E-09 | -8,601 | | 155 | 979.3 | 16.488 | 15,450 | 16,175 | 13.807 | 13.107 | 10.991 | 16.687 | -3.182 | 24.56 | 22.30 | 1.98E-09 | -8.703 | | | | | | | | | | | | | | | 0 70/ | | 160 | 1051.5 | | | 16.106 | 13.680 | 13.079 | 10.938 | 16.597 | -3.241 | 24.37 | 24.43 | 1.60E-09 | -8.796 | | 170 | 1185.5 | | | 15.984 | 13.454 | 13.029 | 10.848 | 16.440 | -3.346 | 24.02 | 28.78 | 1.10E-09 | -8.959 | | | 1304.3 | | | 15.880 | 13.257 | 12.988 | 10.776 | 16.305 | -3.439 | 23.69 | 33.22 | 7.95E-10 | -9.100 | | | 1407.7 | | | 15.790 | 13.082 | 12.953 | 10.716 | 16.188 | -3.523 | 23.39 | 37.68 | 5.99E-10 | -9.222 | | | 1496.3 | | | 15.710 | 12.922 | 12.923 | 10.653 | 16.085 | -3.600 | 23.10 | 42.07 | 4.66E-10 | -9.331 | | | 1571.4 | | | 15.639 | 12.776 | 12.897 | 10.610 | 15.992 | -3.672 | 22.82 | 46.24 | 3.72E-10 | ~9.430 | | | 1634.7 | | | 15.574 | 12.639 | 12.875 | 10.572 | 15.907 | -3.740 | 22.56 | 50.25 | 3.02E-10 | -9.520 | | 230 | 1687.8 | | | 15.514 | 12.511 | 12.855 | 10.540 | 15.828 | -3.804 | 22.30 | 53.98 | 2.49E-10 | -9.603 | | 240 | 1732.3 | | | 15.458 | 12.388 | 12.837 | 10.512 | 15.755 | -3.866 | 22.05 | 57.48 | 2.08E-10 | ~9.68l | | 250 | 1769.6 | 15.334 | 14.168 | 15.406 | 12.271 | 12.820 | 10.487 | 15.686 | -3.926 | 21.81 | 60.69 | 1.76E-10 | -9.755 | | 260 | 1800.9 | 15,252 | 14.075 | 15,356 | 12.157 | 12.805 | 10.466 | 15.621 | -3.983 | 21.58 | 63.67 | 1.50E-10 | -9.824 | | 270 | 1827.3 | | | 15.308 | 12.047 | 12.790 | 10.446 | 15.559 | -4.039 | 21.35 | 66.40 | 1.28E-10 | -9.891 | | | 1849.5 | | | 15.261 | 11.939 | 12.777 | 10.429 | 15.500 | -4.093 | 21.13 | 68.95 | 1.11E-10 | -9.955 | | | 1868.3 | | | 15.217 | 11.834 | 12.764 | 10.413 | 15.442 | -4.146 | 20,91 | 71.30 | 9.61E-11 | -10.017 | | 300 | 1884.3 | | | 15.173 | 11.731 | 12.752 | 10.399 | 15.387 | -4.198 | 20.70 | 73.51 | 8.37E-11 | -10.077 | | | 1898.0 | | | 15.130 | 11.629 | 12.740 | 10,386 | 15.333 | -4.249 | 20.49 | 75.55 | 7.32E-11 | -10,136 | | | 1909.7 | | | 15.089 | 11,529 | 12.728 | 10.374 | 15.280 | -4.299 | 20,29 | 77.51 | 6.42E-11 | -10,192 | | | 1919.8 | | | 15.048 | 11,430 | 12.717 | 10.364 | 15.229 | -4.348 | 20.10 | 79.36 | 5.65E-11 | -10.248 | | | 1928.4 | | | 15.007 | 11.332 | 12,706 | 10.354 | 15.179 | -4.396 | 19.91 | 81.13 | 4.99E-11 | -10,302 | | 350 | 1936.0 | | | 14,967 | 11.235 | 12.696 | 10.345 | 15,130 | -4.443 | 19.73 | 82,82 | 4.42E-11 | -10,355 | | | | _ | | _ | | | | - | | | | | | | 360 | 1942.5 | | | 14,928 | 11.139 | 12.685 | 10.336 | 15.082 | -4.490 | 19.55 | 84.45 | 3.92E-11 | -10,407 | | 370 | 1948.2 | | | 14.889 | 11.044 | 12.675 | 10.328 | 15.035 | -4.535 | 19.38 | 86.03 | 3.49E-11 | ~10,458 | | 380 | 1953.2 | 14.394 | 13,101 | 14.851 | 10.949 | 12.665 | 10.321 | 14.989 | -4.581 | 19.21 | 87.55 | 3.11E-11 | -10,508 | | 390 | 1957.7 | 14.328 | 13,025 | 14.812 | 10.855 | 12.655 | 10.314 | 14.943 | -4.625 | 19.05 | 89.04 | 2.77E-11 | -10,557 | | 400 | 1961.5 | 14.262 | 12.950 | 14.774 | 10.761 | 12.645 | 10.308 | 14.898 | -4.669 | 18.89 | 90.48 | 2.48E-11 | -10.605 | EXOSPHERIC TEMPERATUKE = 2000 K | LOG (DEN
KG/M3) | -100.700
-100.881
-100.968
-110.053
-110.136
-110.217 | 111. 526
111. 526
111. 601
111. 601
111. 601
111. 601
112. 601
112. 601
112. 601 | 112.223
112.2288
112.353
112.417
112.664
112.665
112.665 | 113.0.03.0.03.0.03.0.03.0.03.0.03.0.03. | 11144.0332
11144.0332
11144.0554
1114.0554
1114.0755
1114.0755 | |----------------------------|---
--|--|--|--| | DENSITY
KG/M3 | 2.00E-11
1.00E-11
1.00E-11
1.008E-11
8.00E-12
6.03E-12
5.005E-12
3.54E-12 |
2.986
2.986
2.156
11.806
11.806
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.106
11.10 | 5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00 | 1.17
6.5.17
6.5.17
7.5.5.11
7.5.5.11
7.5.5.11
7.5.5.11
7.5.5.11
7.5.5.11
7.5.5.11
7.5.5.11
7.5.5.11 | 2.2.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5 | | DENSITY
SCALE HT | 998.209
995.209
101.008.209
1008.209
1108.209
1110.209
1112.304 | 1116,30
1119,95
1119,95
1121,69
123,37
125,00
128,14
139,66 | 132.
135.
135.
135.
138.
145.
147.
147.
147.
147.
147.
147.
147.
147 | 150.48
155.28
160.74
167.00
174.33
182.07
204.98
219.00 | 2775
3826
3826
3826
5627
5647
6647
736
736
747
848
848
866
748
866
748
866
748
866
748
866
748
866
748
866
748
866
748
866
748
866
748
748
748
748
748
748
748
748
748
748 | | MEAN MOL WI | 18
10
10
10
10
10
10
10
10
10
10
10
10
10 | 115.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1155
1165
1175
1175
1175
1175
1175
1175 | 11123
111025
111105
11005
1005
1005
1005
1005 | 0 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | LOG
(PRFSSURE
NT/M2) | 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 177
177
177
177
186
187
188
188
187
188
187
188
187
188
187
187 | | LOG (N | 14.08111
14.08111
14.08111
14.081114
14.052
14.178 | 114,
113,
113,
113,
113,
113,
113,
113, | 13.372
13.331
13.750
13.131
13.0075
12.969
12.969 | 12.728
12.604
12.6494
12.388
12.391
12.120
12.120
12.004
11.978 | 111.808
111.6534
111.6534
111.6531
111.7431
111.3421
111.3421
111.3421 | | LOG (N (H) | 10.296
10.296
10.276
10.268
10.262
10.256
10.259
10.233 | 10.226
10.221
10.215
10.216
10.205
10.205
10.191
10.187 | 10.178
10.178
10.170
10.166
10.161
10.157
10.153
10.145 | 10.131
10.122
10.112
10.094
10.095
10.067
10.067 | 10.033
10.017
10.001
9.985
9.955
9.941
9.927
9.913 | | LOG (N (HE)
/M3) | 12.626
12.626
12.589
12.550
12.550
12.534
12.648
12.481 | 12. 446
12. 429
12. 3429
12. 348
12. 348
12. 326
12. 329
12. 312 | 12,280
12,264
12,248
12,216
12,216
12,16
12,169
12,169
12,153 | 12,000
12,063
12,025
11,989
11,989
11,982
11,882
11,813 | 111 - 713
111 - 649
111 - 586
111 - 586
111 - 466
111 - 292
111 - 292
111 - 186
111 - 186 | | LOG(N(A)
/M3) | 10.376
10.393
10.2393
10.0311
9.653
9.6575
9.925
9.151 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 7.151
6.891
6.831
6.673
6.255
6.258
6.205 | | | | LOG (N (O) | 14.6599
14.6525
14.6525
14.6479
14.336
14.196
14.126 | 13, 988
13, 988
13, 852
13, 852
13, 651
13, 651
13, 553
13, 553
13, 553 | 13.324
13.259
13.259
13.196
13.069
13.069
12.944
12.882
12.882 | 12.606
12.456
12.308
12.162
12.018
11.735
11.597
11.597 | 11.060
10.802
10.350
10.304
10.064
9.830
9.601
9.377
9.377 | | LOG (N (02) | 12.654
12.5554
12.5554
12.554
12.521
12.521
11.938
11.659 | 11.384
111.247
110.977
10.843
10.718
10.578
10.578
10.316 | 10.057
9.058
9.080
9.680
9.543
9.247
9.292
9.049 | 88 89 89 89 89 89 89 89 89 89 89 89 89 8 | | | TEMP LOG(N(N2)
K /M3) | 14.0132
113.0132
113.0132
113.0132
113.0132
113.0132
113.0132
113.0132
113.0132 | 12.8990
12.741
12.652
12.534
12.417
12.417
12.010
11.955 | 11.616
11.616
11.504
11.393
11.282
11.063
10.954
10.846 | 100.472
100.472
90.6210
90.695
90.1443
90.1443
90.1443
90.1443
90.1443
90.1443
90.1443 | 7.766
7.313
6.872
6.441
6.021 | | TEMP L | 1968.0
1973.2
1980.6
1980.6
1983.3
1989.0
1989.0
1990.3 | 10000000000000000000000000000000000000 | 1997.1
1997.6
1997.6
1997.8
1997.9
1998.1
1998.2
1998.5 |
1998 8 1 1998 8 1 1999 8 1 199 | 1999.7
1999.8
1999.8
1999.9
1999.9
1999.9
1999.9 | | HE I GHT
KM | 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 6620
660
680
720
740
740
800 | 820
840
860
880
900
940
940
960 | 1050
1150
1150
1250
1350
1450
1450 | 1600
1700
1800
2000
2100
2200
2400
2500 | | | | | | | | | | | | N.F.A.N | DENCETY | | | |--------|--------|----------|--------------|--------------|--------|----------------|--------------|---------|-----------|---------|----------|----------|----------| | | | | 1.05.11.1001 | 1.05 (1) (0) | 10011 | 1.00 (3) (1)=5 | 1.06 (1) (1) | 1.00.41 | LOG | | DENSITY | DENSITY | LOG (DEN | | HEIGHT | | | | | | LOG(N(HE) | | - | (PRESSURE | MOT MI | SCALE HT | | | | KM | K | /M3) NT/M2) | | KM | KG/M3 | KG/M3) | | | | | | | | | | | | | | • | | | 90 | 188.0 | 19.746 | 19.170 | 17.390 | 17.824 | 14.573 | | 19.854 | 732 | 28.91 | 5.63 | 3.43E-06 | +5.465 | | 92 | 188.2 | | | 17.547 | 17.669 | 14.418 | | 19.700 | 886 | 28.85 | 5.58 | 2.40E-06 | | | 94 | 188.7 | | | 17.645 | 17.514 | 14.263 | | 19.544 | -1.040 | 28.76 | 5.53 | 1.67E-06 | -5.776 | | 96 | 190.0 | | | 17.685 | 17.358 | 14.107 | | 19.389 | -1.192 | 28.65 | 5.50 | 1.16E-06 | -5.934 | | 98 | | | | 17.686 | 17.202 | 13.951 | | 19.233 | -1.343 | 28.52 | 5.50 | 8.09E-07 | -6.092 | | 100 | 192.3 | | | 17.662 | 17.046 | 13.795 | | 19.078 | -1.490 | 28.36 | 5.58 | 5.63E-07 | -6.250 | | 102 | 202.3 | | | 17.595 | 16.833 | 13.767 | | 18.924 | -1.630 | 28.21 | 5.56 | 3.93E-07 | -6.406 | | 104 | 211.5 | | | 17.534 | 16.622 | 13.736 | | 18.770 | -1.764 | 28.03 | 5.57 | 2.74E-07 | -6.562 | | 104 | | | | 17.473 | 16.414 | 13.701 | | 18,618 | -1.890 | 27.81 | 5.60 | 1.92E-07 | -6.717 | | 108 | 224.7 | | | 17,409 | 16.211 | 13.663 | | 18.468 | -2'-007 | 27.57 | 5.68 | 1.34E-07 | | | 108 | 242.6 | 18.355 | 17,600 | 11,403 | 10.211 | 13,063 | | 10.400 | #2 # UU I | 21631 | 3.00 | | 20,012 | | 110 | 265.6 | 18,206 | 17.414 | 17.338 | 16.016 | 13.623 | | 18.321 | -2.114 | 27.32 | 5.89 | 9.51E-08 | -7.022 | | 115 | 339.9 | | | 17.144 | 15.579 | 13.524 | | 17,990 | -2.338 | 26.74 | 7.10 | 4.34E-08 | -7.362 | | 120 | 422.7 | | | 16.959 | 15,224 | | | 17.723 | -2.511 | 26.33 | 8.85 | 2.31E-08 | -7.636 | | 125 | 508.4 | | | 16.796 | 14.932 | 13.368 | | 17.504 | -2.650 | 26.01 | 10.58 | 1.38E-08 | -7.861 | | 130 | 595.3 | | | 16.656 | 14,685 | 13.308 | | 17.320 | -2.765 | 25.73 | 12.47 | 8.92E-09 | -8.049 | | 135 | 681.7 | | | 16.536 | 14,472 | 13.256 | | 17.162 | -2.864 | 25.48 | 14.40 | 6.15E-09 | -8.211 | | 140 | 767.4 | | | 16.430 | 14.285 | 13.210 | | 17.025 | -2.950 | 25.25 | 16.37 | 4.44E-09 | -8,353 | | 145 | 851.8 | | | 16.336 | 14.119 | 13.170 | | 16.903 | -3.026 | 25.03 | 18.37 | 3.33E-09 | -8.478 | | 150 | 934.4 | | | 16.252 | 13,969 | 13.134 | 10,964 | 16.795 | -3.095 | 24.83 | 20.42 | 2.57E-09 | -8.590 | | 155 | 1015.0 | | | 16.176 | 13.833 | 13.102 | 10.905 | 16.697 | -3.157 | 24.64 | 22.51 | 2.04E-09 | -8,691 | | 175 | 1015.0 | , 10.502 | 134401 | 10.110 | 13,003 | 13,102 | 10,703 | 10.67 | -34151 | £ 7,0 · | | | | | 160 | 1093.0 | 16,405 | 15.361 | 16.107 | 13,708 | 13,073 | 10.851 | 16.608 | -3.213 | 24.46 | 24.65 | 1.65E-09 | -8.783 | | 170 | 1240.1 | | | 15.985 | 13.487 | 13.022 | 10.761 | 16.452 | -3.315 | 24.12 | 29.06 | 1.13E-09 | -8.946 | | 180 | 1373.2 | | | 15.882 | 13.294 | 12,980 | 10.687 | 16,319 | -3.404 | 23.82 | 33.62 | 8.23E-10 | -9.084 | | | 1491.3 | | | 15.792 | 13,123 | 12.944 | 10.626 | 16.203 | -3.484 | 23.53 | 38.28 | 6.23E-10 | -9.205 | | | 1594.2 | | | 15.713 | 12,970 | 12.914 | 10.563 | 16,101 | -3.557 | 23.26 | 42.97 | 4.87E-10 | -9.312 | | 210 | 1682.5 | | | 15,643 | 12.829 | 12.887 | 10.519 | 16,009 | -3.625 | 23.00 | 47.52 | 3.90E-10 | -9.408 | | | 1757.6 | | | 15,579 | 12,699 | 12.864 | 10.480 | 15,927 | -3.688 | 22.76 | 51.94 | 3.19E-10 | -9.496 | | 230 | 1821.1 | | | 15.521 | 12.577 | 12.844 | 10.447 | 15.851 | -3.749 | 22.52 | 56.12 | 2.65E-10 | -9.576 | | | 1874.6 | | | 15.467 | 12,461 | 12.826 | 10.419 | 15.781 | -3.806 | 22.29 | 60.06 | 2.23E-10 | -9.651 | | 250 | 1919.6 | | | 15.417 | 12,351 | 12.810 | 10.393 | 15.715 | -3.862 | 22.07 | 63.70 | 1.90E-10 | -9.721 | | | -, | | | | - | | • | | | | - | - | - | | 260 | 1957.5 | 15,303 | 14.139 | 15,369 | 12,245 | 12.795 | 10.371 | 15.653 | -3.916 | 21.85 | 67.09 | 1.63E-10 | -9.788 | | 270 | 1989.5 | 15,229 | 14,055 | 15.324 | 12.142 | 12.781 | 10.351 | 15.594 | -3.968 | 21.64 | 70.19 | 1.41E-10 | -9.851 | | 280 | 2016.5 | | | 15,280 | 12.043 | 12.768 | 10.333 | 15.537 | -4.018 | 21.43 | 73.08 | 1.23E-10 | -9.911 | | 290 | 2039.4 | | | 15.239 | 11.945 | 12.755 | 10.317 | 15.483 | -4.067 | 21.23 | 75.72 | 1.07E-10 | -9.970 | | 300 | 2058.9 | | | 15.198 | 11.850 | 12.744 | 10.302 | 15.431 | -4.116 | 21.03 | 78.20 | 9.41E-11 | -10.026 | | 310 | 2075.5 | | | 15,158 | 11.756 | 12.732 | 10.289 | 15.380 | -4.163 | 20.84 | 80.49 | 8.30E-11 | -10.081 | | 320 | 2089.8 | | | 15,120 | 11.664 | 12.722 | 10.277 | 15.331 | -4.209 | 20.65 | 82.65 | 7.34E-11 | -10.134 | | 330 | 2102.0 | | | 15.082 | 11.573 | 12.711 | 10.266 | 15.283 | -4.255 | 20.47 | 84.67 | 6.51E-11 | -10.186 | | 340 | 2112.6 | | | 15.044 | 11,484 | 12.701 | 10.256 | 15.236 | -4.299 | 20.29 | 86.61 | 5.80E-11 | -10.237 | | 350 | 2121.8 | | | 15.008 | 11.395 | 12.691 | 10.246 | 15.190 | -4.343 | 20.11 | 88.44 | 5.17E-11 | -10.286 | | | • | | • | | | | | | | | | _ | | | 360 | 2129.8 | | | 14.971 | 11.307 | 12.682 | 10.237 | 15.145 | -4.387 | 19.94 | 90.20 | 4.62E-11 | -10,335 | | 370 | 2136.8 | 14.573 | 13.310 | 14,936 | 11.219 | 12.672 | 10.229 | 15.101 | -4.429 | 19.78 | 91.90 | 4.14E-11 | -10.383 | | 380 | 2142.9 | | | 14.900 | 11.133 | 12.663 | 10.221 | 15.058 | -4.471 | 19.61 | 93.52 | 3.72E-11 | -10.430 | | 390 | 2148.3 | 14.451 | 13.171 | 14.865 | 11.047 | 12.654 | 10.214 | 15.015 | -4.513 | 19.46 | 95.11 | 3.34E-11 | -10.476 | | | 2153.0 | | | 14.831 | 10.962 | 12-645 | 10.207 | 14.973 | -4.554 | 19.30 | 96.64 | 3.01E-11 | -10.521 | Ç EXOSPHERIC TEMPERATURE = 2200 K | L06(DEN
K6/M3) | -10.609
-10.695 | | · . | | | :-: | 3.0 | 1.45 | -11,521 | 1.58 | 5991 | 7,6 | 79 / 0 | 1.9 | 1.97 | 03 | 6 | -12,152 | 2,21 | 2,26 | 2,32 | • | 2.49 | 2,55 | 68 | 2. B 2 | 2.95 | 3.07 | 3,20 | 16.0 | -13.542 | 3.64 | 3.74 | 3,9 | 60 | 4,23 | 4.36 | 4 | | | 77 | £ 83 | | |----------------------------|----------------------|--------------|----------|----------------|--------|--------------|--------|--------------------|----------|---------|--------|---------|--------|---------|--------|-----|---|---------|---------|-------|------|-------------|-----------|----------|--------|--------|------|------|------|------------|-----------|------|--------|-------|------|-------|------|---------|--|---------|----------|--------|----| | DENSITY
KG/M3 | 2.46E-11
2.02E-11 | 38E-1 | . 15E-1 | .06E-1 | .79E-1 | 86E-1 | 1.66.1 | 536-1 | 3.02E-12 | . 59E-1 | .22E-1 | 1 - 316 | 43541 | 23E-1 | .07E-1 | 1 | <u> </u> | £-1 | <u></u> | Ä. | 3 | 1 | E | 2,80E-13 | , i | E | E-1 | E-1 | 4 | 1 | 2.87E=14 | E-1 | E-1 | - | - | 7 | 7 | 7 | <u>;</u> | | 1.695-15 | 7 | | | DENSITY
SCALE HT
KM | 99.62 | 07.9 | 13.0 | 15.4 | 17.8 | 22.3 | 3,4 | 24.5 | 128.68 | 30.6 | 32.5 | 4.4 | 700 | 30.0 | 41.4 | 6.2 | 44 | • • | 47.7 | 49.3 | 80 | 4 ° 7 'S | 55.5 | 157,15 | . 19 | 4.59 | 0.0 | 74.9 | 80.5 | 900 | 202.10 | 11.4 | 22.3 | 48.9 | 83.8 | 27.8 | 81.3 | φ.
• | ֓֞֓֓֓֓֓֓֞֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֡֓֓֓֡֓֓֡֓֡֓֡֓֡ | 7 | 710.49 | 68,5 | | | MEAN MCL WT. | 19.01 | | 8,7 | : ~: | ۴. | : ;: | 70 | 0 0 7 | 16.67 | 16.54 | 16.41 | 16.29 | 97.0 | 15,95 | 15.84 | | . 4 | | 5.3 | 5.2 | 2.0 | ر
د
د | 7 | 4.5 | 4 | | , " | 2 | 2 | ∴ , | 10.0 | • | • | 9 | | ٠, | ď, | ٠. | • | • | 4.18 | 7 | | | LOG
(PRESSURE
NT/M2) | 4.634 | 9 | 93 |
8 | .15 | 28 | | 0 0 0 C | -5.482 | 5,54 | 9.60 | 5.66 | 5.43 | 5. P. S | 5.90 | ž | 200 | 0 | 6,13 | 6.19 | 6.24 | 29 | 4 | -6.454 | 7 | - 0 | 8 | 16 | 5 | =ິເ | - (- 203 | 36 | 43 | 5.5 | 99 | .75 | .83 | 8 | 6 | 200 | -8,132 | 18 | | | LOG (N | 14.891
14.812 | 4.6 | 4 4
7 | . 4 | 4. | | | • • | 14,037 | 3,97 | 3.91 | 3.84 | 3.78 | 3.66 | 3.61 | | . מ
מ | . 4 | 3,38 | 3,32 | 3.27 | 3.21 | | 3.06 | • | • | • | • | 4 | 3 (| 12.233 | • - | 12,086 | 1.06 | 1.85 | 1.76 | 1.68 | 1.61 | 1.55 | 1 . 4 V | 11.386 | 1,33 | | | LOG (N(H) | 10,195
10,184 | | | • | | | | • | 10,114 | | 0 | 0.0 | 90 | | | • | Š | | 0 | ō. | ŏ, | o c | Ö | 10.044 | 0 | | 0.0 | 8 | 000 | 66. | 4.904 | 96 | 96 | 40 | | .91 | 90 | .88 | , B , | 9 4 | | .82 | | | LOG (N (HE)
/M3) | 12.627 | 2.57 | 2.55 | 2,52 | 2,51 | 2°47 | | 7.
2.40
4.40 | . 4 | 2,41 | 2.40 | 2,38 | 2.37 | 7.30 | 2.32 | , | 7.00 | 28 | 2,26 | 2,25 | 2,23 | 2,52 | 7.10 | 12,182 | 7 | 7 - 1 | 2.08 | 2.04 | 2.01 | 1.98 | * 0 | 1.88 | 11.856 | 1,70 | 1.73 | 1.68 | 1,62 | 1.56 | 1.5 | 4.4 | . " | 1,31 | مر | | LOG (N (A)
/M3) | 10.793 | 0.29 | 0,13 | . 18 | 9 | ው ¢ | 9 | 200 | 8.874 | 72 | 20 | 7 | 2 - | :6 | 7,823 | 1 | 2 6 | 38 | .24 | 60 | \$6. | 18. | . K | 6,393 | 4.048 | 2 | | | | | | | | | | | | | | | | | | | /W3)
LDG (N (O) | 14,762 | 4.56 | 4.49 | 4.36 | 4.30 | 4.17
4.17 | | 4. L | 9 | 3,92 | 3.86 | 9 | 3.74 | 200 | 30 | | 0 K | . W |
 | 3.2 | 3,0 | | | 12,995 | a
a | 7.77 | 2.58 | 2,45 | 2,32 | 2,19 | 9 0 | 1.81 | 1.6 | 4. | 2, | 86 | • 76 | 54 | | 77. | 9.723 | 52 | | | L0G(N(02)
/M3) | 12,967 | in | ~ ~ | , ₁ | ∼. | | | 9 4 | | 30 | 18 | 9 | 94 | 200 | 10,586 | | ֓֞֜֜֜֜֜֜֝֓֜֜֜֓֓֓֓֓֜֜֜֓֓֓֓֓֓֓֓֓֡֓֜֜֓֓֓֓֡֓֜֜֓֡֓֡֓֡֓֡֓֡֓֡֓֡֡֡֡֜֡֓֡֡֡֡֓֡֡֜֜֡֡֡֡֡֡ | 23 | 0,12 | 00.00 | 89 | ~; | ָ
פֿינ | 9.441 | 4 | 9 0 | 62 | 35 | 60. | 8 | מית | 9.0 | 6.835 | 4.354 | 1 | | | | | | | | | | LOG(N(N2) | 14.272 | 3.92 | 3,80 | 3,58 | 3.47 | 3,26
3,25 | | 4.0 | 2.0 | 2,81 | 2,71 | 2.60 | 2.49 | 200 | 12,187 | , | 200 | 8 | 1.77 | 1,67 | 1.57 | 1.47 | 200 | 11,184 | ò | , , | 0.46 | 23 | 0.0 | 8,1 | กูเ | ; - | 8.903 | 4 | 0 | 7.669 | .27 | .89 | 52. | ₹. | | | | | TEMP LC | 2161.0 | 176.
176. | 179. | 184. | 186 | 188. | | 26. | 192 | 193 | 194. | 194. | 195 | 192 | 2196.2 | } | 961 | 197. | 197 | 197. | 197. | 197 | 9 0 | 2198.2 | 9 | 9 0 | 108 | 199. | 199. | 199. | 199 | 100 | 2199.5 | 0 | 100 | 199. | 199. | 199. | 199. | 199. | 100 | 2199.9 | | | HE I GHT
KM | 440 | 480 | 500 | 240 | 260 | 009
909 | | 079 | 099 | 989 | 100 | 120 | 740 | 0 0 | 8008 | | VV | • • | 8 | 0 | ~ | す、 | 0 0 | 1000 | | 1000 | 0511 | 1200 | 1250 | 1300 | 1350 | 1450 | 1500 | ٠, | 3 r | യ | Ç | ο. | → (| ~ . | 2400 | 2500 | | EXOSPHERIC TEMPERATURE = 2400 K -10.276 -10.321 -10.365 -10.408 LOG(DEN KG/M3) 1.75E-10 1.32E-10 1.32E-10 1.07E-10 1.04E-10 8.19E-11 7.32E-11 5.85E-11 1.059E.09 1.17E.09 8.48E.10 6.44E.10 5.05E.10 4.05E.10 2.35E.10 2.35E.10 5.30E-11 4.78E-11 4.32E-11 3.91E-11 4.9.48 E. 10.9.49 1 3.43E.06 [1.67E.06 [1.67E.06 [3.09E.06 [3.09E.07] [3.09E.07] [3.09E.07] [3.09E.07] [3.09E.07] DENSITY KG/M3 MEAN DENSITY MOL WT SCALE HT KM 95.84 97.67 99.41 101.10 70.18 730.18 746.93 796.93 82.63 85.21 87.61 99.98 93.96 5.89 11.00 10.00 1 21.69 21.50 21.32 21.14 20.96 20.79 20.62 24.53 22.53 23.65 23.65 23.65 22.65 22.65 22.65 22.65 23.65 25.65 20.29 20.13 19.97 19.82 LOG (PRESSURE . NI/M2) -4.299 -4.339 -4.417 -4.455 -3.644 -3.701 -3.808 -3.450 -3.519 -3.584 -2.111 -2.333 -2.502 -2.849 -2.933 -3.007 -3.074 -2.639 -2,752 16.462 16.330 16.215 16.114 15.963 15.869 15.869 15.869 18.320 17.9990 17.724 17.506 17.323 17.167 17.031 16.911 16.803 15.516 15.466 15.418 15.326 15.2826 15.2826 15.197 15.155 15.114 15.074 19.854 19.700 19.546 19.538 19.033 19.033 18.923 18.470 18.467 16.617 15.678 15.621 15.567 LOG(N(A) LOG(N(HE) LOG(N(H) LOG(N /M3) /M3) /M3) /M3) 10.5474 10.683 10.683 10.483 10.438 10.399 10.335 10.335 10.287 10.266 10.248 10.232 10.217 10.203 10.190 10.168 10.149 10.141 10.133 10.125 10.887 13.068 13.016 12.973 12.905 12.878 12.855 12.834 12.816 13.621 13.521 13.364 13.364 13.264 13.252 13.256 13.130 13.097 12.785 12.771 12.758 12.747 12.735 12.725 12.704 12.695 12.686 12.676 12.668 12.659 12.650 12.642 14.573 14.263 14.107 13.9951 13.795 13.795 13.795 13.795 2.936 12.317 12.221 12.127 12.037 11.948 11.861 11.691 11.608 11.445 11.364 11.285 11.205 17.824 17.669 17.569 17.514 17.202 17.202 17.202 16.6833 16.622 16.414 16.016 15.020 16.020 16.020 16.0000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.0000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.0000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.0000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000
16.000 16.00 3,515 13.159 13.009 12.873 12.748 12.631 12.521 LOG (N (O) 17.336 17.141 16.956 16.496 16.655 16.535 16.337 16.253 16.177 16.108 15.987 15.883 15.714 15.455 15.582 15.525 15.424 15.073 15.005 14.972 14.939 14.907 17.0885 11.0685 11.0685 11.0685 11.0594 11.0594 11.0594 LOG(N(N2) LOG(N(02) 14,190 14,111 14,035 13,961 13,889 13,819 13,750 13,682 13,682 19.170 19.009 18.843 18.671 18.497 18.320 18.144 17.966 17.599 13,483 13,418 13,354 13,291 13,228 117.413 116.0413 116.0655 116.022 116.022 117.413 117.424 117.424 15.378 15.192 15.031 14.890 14.764 14.650 14.448 14.358 15.244 15.274 15.207 15.207 15.078 15.078 17.895 14.895 14.895 16.248 16.248 16.101 15.943 15.455 15.661 15.464 15.464 15.464 17.464 14.663 14.663 14.607 14.551 14.496 18.205 17.868 17.592 17.365 17.173 17.008 16.863 16.619 16.514 19.746 119.592 119.592 119.280 119.124 118.968 118.815 118.661 118.507 2316.0 2324.3 2331.6 2338.1 2343.7 2268.1 4344.8 5130.4 518.8 608.5 698.0 786.9 961.8 1568.5 1685.5 1787.3 1874.6 1949.1 2012.1 2110.3 2148.3 2180.5 2207.8 2231.1 2251.0 2268.0 2282.7 2295.4 2306.4 188.0 188.2 188.8 190.1 190.1 195.5 202.8 212.3 244.4 1130.3 TEMP K HE I GHT KM 0 2 4 8 8 0 0 0 0 0 EXOSPHERIC TEMPERATURE = 2400 K | 1 | 2500 | 0040 | 2300 | 2200 | 2100 | 2000 | 2 400 | 1000 | 1800 | 1700 | 1600 | | 1500 | • | • | | | | N | N | _ | | | _ | 1000 | 980 | 960 | 940 | 0.76 | 2 6 | 000 | 880 | 860 | 840 | 820 | | 800 | 280 | 100 | 1 | 7.00 | 720 | 700 | 680 | 660 | 640 | 620 | | 0 | œ | • | ٠. | ٠, | v | ٥ د | 9.4 | • | | v | | 3 | HE 13H | 7 | | |---|--------|--------|-------|------|--------|--------|--------|---------|---------|-------|----------------|------------|--------|-------|-------|--------|--------|--------|--------|---|-------|--------|--------|-------|-------|------|-------|-------|------------|--------|-------|-------|---------|-------|--------|-------|-------|-------|--------|---------------|---|-------|-------|------|------|-----------|----------|-----|------|-------|------------|--------|------------|-------------|-------|--------|-------|---------------|---------|---|---|-------------|-------------|-----------| | | 2399.9 | 00 | 99. | 399. | 399. | 399. | | 200 | 900 | 399. | 399. | | 2399.4 | 399. | 399. | 399. | 2 7 7 | 000 | 399. | 398. | 398. | 9060 | | 80 | 707 | 397. | 397. | 397. | 391 | | 207 | 306 | 2396.5 | 396. | 395. | | 395 | 295 | 1 1 | 160 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 100 | 392 | 392. | 391 | 390. | œ | | 387. | 385 | 100 | | 300 | 1 - 7 | 275 | 2371.6 | 7 | 260 | 353 | | | 7E37 | 1 | EXCORDENT | | | • | 3 0 | 62 | • | . Z | 0 | | J I | ָ
עו | 69 | 9.075 | | 9.462 | • | . 85 | | 0 0 | 0 | 0.47 | 0.68 | 8 | • | - 1 | 1 33 | | | | | | | | | 12 191 | | 12,378 | | 47 | 200 | | | 75 | 2 85 | 95 | 3.05 | 3.14 | 3.24 | w | | 3.44 | 50.04 | | | 3 6 6 | ָ
מ
מ | 300 | 14.065 | 4 17 | 4.27 | 4.38 | | i | (ZN) N) SOT | | | | | | | | | | | | • | . 18 | .60 | 7.037 | | 7,479 | • | • | • | | | • | • | • | | | • | 86 | • 97 | 0.07 | 110 | | 3 6 | 3 | 0.49 | 59 | 0.70 | 0 | | 0.91 | 1 | | - 5 | 200 | 1 35 | | . 57 | 1.69 | 1.80 | 11.917 | | 2.0 | • | | 9 | | | 2 | 12.736 | 2 | 2 . 9 | u | | , | /M3) | . >>> | 7 | | | 10,012 | 0.19 | 0.37 | 0.55 | | | | 1 . 1 4 | 1.34 | 1,55 | 1.77 | | 1.99 | 2,10 | 77.7 | | | 2.45 | 2,57 | 2,69 | • | 1 0 | 0 | 3.06 | | ٠., | | | | | | | 13,554 | | 13,661 | | 3,71 | 10 | 76 | ָ
פּ
פּ | 87 | 93 | 3.99 | 4.04 | 4,10 | 4.15 | 14,215 | , | | • | ٠. | ١. | | ١. | • | 14.627 | 1 | 4 | | | 1 | /M3) | 06.68.60 | • | • | 6.306 | 61 | •93 | .06 | - | | נו
נונו | | 58 | 17. | •
84 | • 97 | 8.111 | | • | . : | | | | | • | • | • | | 9.49.5 | | • | • | . : | 0 | | 0 | 0 | 10.515 | • | 9 | 2.0 | | | /M3) | I OCINIA) | | | _ | 11.422 | 1.46 | 1.51 | 1.55 | 100 | | | 1.70 | 1.75 | 1.80 | 1.86 | | 1.91 | 1.94 | 1 6 1 | | 000 | 2.03 | 2.06 | 60.2 | 2000 | 31 | 7 | 2.18 | 2.21 | 2.23 | 47.7 | 100 | 10 | 2 | 2.28 | 2.29 | . 30 | 2.32 | · N | | 6.54 | | 2 | יי
ני | 2.38 | 2.40 | 2,41 | 2,43 | 2.44 | 1040 | 12.474 | | 7.40 | | 5 F | 2.51 | יות
נענ | 2.54 | 2.56 | 12.578 | 59 | • 60 | 62 | | : | /M3) | 1 06 (N (HE | | | | • | • | • | • | | | | | ė | å | 00 | | .87 | 88 | | | | 90 | .91 | . 92 | 2000 | | 0 | • 94 | • | • | • | | • | | | • | • | • | 9.988 | | - | _ | | | | • | _ | _ | • | • | 10.033 | | - | ٠, | ~ <i>i</i> | _ | _ | _ | _ | 10.076 | _ | $\overline{}$ | 0 | | | /M3) | _ | | | | 1.44 | 1.49 | 1.54 | 1.60 | | | 177 | 1.81 | 1.90 | 2.00 | 12,125 | | 2.26 | 6.33 | 1 | 3 | 2 50 | 2.59 | 2.69 | 41.7 | 100 | 9 6 | 3.01 | 3.12 | ,, | 3.29 | |) (| 100 | 3 4 4 | 64. | • 54 | • 59 | .64 | 13.703 | , | .5.75 | , i | ב
ב | 9 | 3.02 | 3.98 | 4.03 | 4.09 | 4.15 | * | 14.77 | | | ٠. | | | 5 | | • | 14.739 | 30 | • | • | | | /M3) | | | | | 03 | 7.98 | 7.93 | . 8 | | | 7.74 | 7.66 | 7.57 | 7.41 | | | 7.21 | | | | 4.97 | 6.88 | 6.78 | 000 | • | , i | 6.47 | 35 | 6.23 | 91.9 | 0 1 1 | | 000 | 6.03 | 5.98 | 5,93 | 88 | 5.83 | -5.777 | | | • | | 5 | 5 | ¥. | 5.4 | 5 | | | 10000 | , | • | ٠: | _ : | • | • | • | • | -4.746 | • | • | -4.530 | | | - | LOG | | | | ů | •, | • | · | ٠. | | • | 5 | ů | : | 9.37 | , | | : | | _ | 2 | 2 | | | | • | 4 | 14.81 | 5 | | | 7 | 5 | ייי | 5.6 | 5.7 | 5.8 | 9 | 16.07 | • | 0 | • | • | • | Ò | 0 | ٥ | 0 | - | : | 17 67 | | | | 7.6 | 7.7 | 7.9 | 8.1 | 8.3 | ÷ | 8.8 | • | 19,39 | | | | MCE AT | | | | 5.6 | 35.2 | 65.0 | | | 7 | 80.4 | 33.8 | 95.6 | 1.00 | , , | | 77 | | 1 | 07. | 2.1 | 95.4 | 7.06 | 9 0 | 2 | 80.9 | 76.6 | 72 | 68.3 | 0 | | 7 1 | | 61.7 | 60.0 | 58.3 | 6.5 | 4.0 | 10.601 | , | | 51 | 49.2 | 47.3 | 45.3 | 43.3 | 41.2 | 1.66 | | | 126.71 | 20. | | 30.0 | 27.5 | 25.1 | 22.5 | 19.9 | 17.3 | 4.5 | 11.7 | 08.8 | 6 | | | X | DENSITY | 1 | | | 044-1 | 37E-1 | 195-1 | | 20-1 | 18E-1 | .35E-1 | .09E-1 | 755-1 | 1-160 | Z-0/E-14 |)

 | 1-361 | 1000 | 00F_1 | 09E-1 | .50E-1 | .37E-1 | - | | 42E_1 | 86E-1 | 46E-1 | 28E- | 1-365 | 4000 | | 596 | 31E-1 | .13E-1 | 08E-1 | 165-1 | 1-340 | - | 10511 | 3 8 6 | | 54E-1 | .75E-1 | .01E-1 | .30E-1 | 645-1 | 040-1 | | 1000 | 0.5-1 | 4.70E-12 | 445 | | 36E-1 | 43E-1 | .70E-1 | .02E-1 | 21E-1 | 43E-1 | .70E-1 | 026-1 | 435-1 | 925 | 1 | | KG/M3 | DENSITY | | | | -14.69 | -14.62 | 14.00 | | -14.47 | =14.37 | -14.27 | -14.14 | -14.01 | 11000 | 1 1 | | 44.61- | 11000 | יייי | -13.29 | -13.18 | -13.07 | 06.71* | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 12.84 | -12.73 | -12.60 | | 14.35 | | 2 | 12.25 | 12.20 | 12.14 | 12,09 | F0 21 | 11.98 | 76.41 | 11.077 | | | 11.81 | 11.75 | 11.69 | 11,63 | 11.57 | 11.01 | | | 1 1 2 0 0 | 11.328 | 1 2 | • | 11.19 | 11.12 | 11.06 | 10.99 | 10.91 | 10.84 | 0.77 | 10.69 | 10.61 | -10.534 | ; | | KG/M3) | LOG (DEN- | LOG | MEAN | DENSITY | | | |----------|--------|-----------|-----------|----------|----------|-----------|-----------|--------|----------------|-------|----------|----------|----------| | HE I GHT | TEMP | LOG(N(N2) | LOG(N(02) | LOG(N(O) | LOG(N(A) | LOG(N(HE) | LOG (N(H) | LOG (N | (PRESSURE | | SCALE HT | DENSITY | LOG (DEN | | KM | K | /M3) NT/M2) | | KM | KG/M3 | KG/M3) | | | | - | | | · | , , , | | , | ********** | 90 | 188.0 | 19.746 | 19.170 | 17,390 | 17.824 | 14.573 | | 19.854 | 732 | 28.91 | 5.63 | 3.43E-06 | -5.465 | | 92 | 188.2 | 19.592 | 19,009 | 17.547 | 17.669 | 14,418 | | 19.700 | 886 | 28.85 | 5.58 | 2.40E-06 | -5.620 | | 94 | 188.8 | | | 17.645 | 17.514 | 14.263 | | 19.544 | -1.040 | 28.76 | 5.53 | 1.67E-06 | -5.777 | | 96 | 190.2 | | 18,671 | 17.685 | 17,358 | 14.107 | | 19.389 | -1.192 | 28.65 | 5.50 | 1.16E-06 | .5.934 | | 98 | 192.6 | | 18.497 | 17.685 | 17,202 | 13.951 | | 19.233 | -1.343 | 28.52 | 5.49 | 8.09E-07 | -6.092 | | 100 | 196.7 | | 18.320 | 17.661 | 17.045 | 13.794 | | 19.077 | | | | | | | 102 | 203.2 | | 18.144 | 17.593 | 16.833 | | | | -1.489 | 28.36 | 5.57 | 5.62E-07 | -6.250 | | 104 | | | | | | 13.766 | | 18.923 | -1.629 | 28.21 | 5.55 | 3.92E-07 | -6.406 | | | 213.0 | | 17.966 | 17.532 | 16.622 | 13.734 | | 18.769 | -1.762 | 28.03 | 5.56 | 2.74E-07 | -6.563 | | 106 | 227.0 | | 17.784 | 17.471 | 16.413 | 13.699 | | 18.616 | -1.888 | 27.81 | 5.59 | 1.91E-07 | -6.719 | | 108 | 246.0 | 18.353 | 17,599 | 17.405 | 16.211 | 13.660 | | 18.466 | -2.003 | 27.58 | 5.68 | 1.34E-07 | -6.873 | | 110 | 270.4 | 18,205 | 17.413 | 17.334 | 16.016 | 13.619 | | 18.319 | -2.109 | 27.32 | 5.89 | 9.47E-08 | -7.024 | | 115 | 349.4 | | 16.988 | 17.139 | 15.583 | 13.518 | | 17.989 | -2.328 | 26.76 | 7.14 | 4.33E-08 | -7.363 | | 120 | 437.3 | | 16.667 | 16.954 | 15.233 | 13,432 | | 17.724 | | | | 2.32E-08 | | | 125 | 528.3 | | 16.417 | | 14.946 | | • | | -2.495 | 26.36 | 8.96 | | -7.635 | | | | | | 16.792 | | 13.361 | | 17.508 | -2.629 | 26.06 | 10.74 | 1.39E-08 | -7.856 | | 130 | 620.7 | | 16.208 | 16.654 | 14.705 | 13.300 | | 17.327 | -2.741 | 25.79 | 12.70 | 9.08E-09 | -8.042 | | 135 | 712.9 | | 16.030 | 16,535 | 14.497 | 13.248 | | 17.172 | -2.835 | 25.55 | 14.67 | 6.30E-09 | -8.201 | | 140 | 804.7 | | 15.874 | 16.430 | 14.315 | 13.203 | | 17.037 | -2.918 | 25.33 | 16.67 | 4.58E-09 | -8.340 | | 145 | 896.1 | 16.743 | 15.735 | 16.337 | 14.153 | 13.162 | | 16.917 | ~2.99 0 | 25.13 | 18.69 | 3.45E-09 | -8.462 | | 150
 986.7 | | 15.610 | 16.254 | 14.007 | 13.126 | 10.817 | 16.810 | -3.056 | 24.94 | 20.76 | 2.68E-09 | -8.573 | | 155 | 1076.1 | 16.524 | 15.496 | 16,178 | 13.875 | 13.093 | 10.758 | 16.714 | -3.114 | 24.76 | 22.85 | 2.13E-09 | -8.672 | | | | | | | | | | | | | | | | | 160 | 1164.2 | 16.429 | 15.392 | 16,109 | 13.754 | 13.063 | 10.705 | 16.626 | -3.168 | 24.60 | 25.00 | 1.73E-09 | -8.763 | | 170 | 1334.3 | 16.260 | 15.208 | 15.988 | 13,539 | 13,011 | 10.613 | 16.471 | -3.264 | 24.29 | 29.44 | 1.19E-09 | -8.923 | | 180 | 1493.8 | 16,115 | 15.050 | 15.884 | 13.353 | 12.967 | 10.538 | 16.339 | -3.346 | 24.01 | 34.13 | 8.71E-10 | -9.060 | | 190 | 1639.9 | 15,988 | 14.910 | 15.794 | 13.189 | 12,929 | 10.475 | 16,225 | -3.420 | 23.75 | 39.04 | 6.62E-10 | -9.179 | | 200 | 1771.0 | | 14.786 | 15.715 | 13.043 | 12.897 | 10.411 | 16,125 | -3.487 | 23.51 | 44.13 | 5.20E-10 | -9.284 | | 210 | 1886.3 | 15.775 | 14.675 | 15.646 | 12.910 | 12.870 | 10.364 | 16.036 | -3.548 | 23.29 | 49.28 | 4.20E-10 | -9.377 | | 220 | 1986.1 | 15.683 | 14.573 | 15.584 | 12.789 | 12.846 | 10.325 | 15.956 | -3.606 | 23.07 | 54.42 | 3.46E-10 | -9.461 | | 230 | 2071.9 | | 14.480 | 15.528 | 12.677 | 12.825 | 10.290 | 15.884 | | | | | | | 240 | 2144.9 | | 14.392 | 15.476 | 12.571 | | | | -3.660 | 22.87 | 59.41 | 2.90E-10 | -9.537 | | | | | | | | 12.807 | 10.260 | 15.817 | -3.711 | 22.67 | 64.21 | 2.47E-10 | -9.607 | | 250 | 2207.0 | 15.447 | 14.310 | 15.429 | 12.472 | 12.790 | 10,234 | 15.756 | -3.761 | 22.47 | 68.72 | 2.13E-10 | -9.673 | | 260 | 2259.5 | 15,377 | 14.232 | 15.385 | 12.377 | 12.775 | 10.211 | 15.698 | -3.808 | 22.28 | 72.96 | 1.85E-10 | -9.734 | | 270 | 2303.9 | 15,311 | 14.157 | 15.343 | 12.286 | 12.762 | 10.190 | 15.644 | -3.854 | 22.10 | 76.86 | 1.62E-10 | -9.792 | | 280 | 2341.7 | | 14.086 | 15.304 | 12.198 | 12.749 | 10.171 | 15.592 | -3.898 | 21.92 | 80.50 | 1.42E-10 | -9.847 | | 290 | 2373.8 | 15.185 | 14.016 | 15.266 | 12.112 | 12.738 | 10.154 | 15.543 | -3.942 | | 83.81 | 1.26E-10 | -9.900 | | 300 | 2401.1 | 15.125 | 13.948 | 15.230 | 12.029 | 12.727 | - | | | 21.74 | | | | | 310 | 2424.5 | 15.067 | 13.882 | 15.195 | 11.948 | 12.717 | 10.139 | 15.495 | -3.984 | 21.57 | 86.91 | 1.12E-10 | -9.951 | | 320 | 2444.5 | 15.010 | | | | | 10.125 | 15.450 | -4.026 | 21.40 | 89.74 | 1.00E-10 | -10.000 | | | | | 13.818 | 15.161 | 11.868 | 12.707 | 10.112 | 15.405 | -4.067 | 21.23 | 92.40 | 8.96E-11 | -10.048 | | 330 | 2461.8 | 14.954 | 13.754 | 15.127 | 11.789 | 12.697 | 10.100 | 15.362 | -4.106 | 21.07 | 94.84 | 8.05E-11 | -10,094 | | 340 | 2476.7 | 14.899 | 13,691 | 15.095 | 11.712 | 12.688 | 10.089 | 15.320 | -4.146 | 20.91 | 97.16 | 7.26E-11 | -10.139 | | 350 | 2489.7 | 14.845 | 13,630 | 15.063 | 11,636 | 12.679 | 10.079 | 15.279 | -4.184 | 20.75 | 99.32 | 6.56E-11 | -10.183 | | 360 | 2501.0 | 14.791 | 13.569 | 15.031 | 11.560 | 12 471 | 10 070 | 16 220 | , 222 | 30 EC | 101 20 | E 03E 11 | 10 22 | | 370 | 2510.8 | 14.738 | 13,509 | 15.000 | 11.485 | 12.671 | 10.070 | 15.239 | -4.222 | 20.59 | 101.39 | 5.93E-11 | -10.227 | | 380 | 2519.4 | | | - | | 12.662 | 10.061 | 15.200 | -4.260 | 20.44 | 103.35 | 5.38E-11 | -10.269 | | | | 14.686 | 13.449 | 14.970 | 11.411 | 12.654 | 10.053 | 15.162 | ~4.297 | 20.29 | 105.20 | 4.89E-11 | -10.311 | | 390 | 2527.0 | 14.634 | 13.390 | 14.940 | 11.338 | 12.646 | 10.045 | 15.124 | -4.333 | 20.15 | 107.00 | 4.45E-11 | -10.352 | | 400 | 2533.7 | 14.583 | 13.332 | 14.910 | 11.265 | 12.638 | 10.038 | 15.087 | -4.369 | 20.00 | 108.73 | 4.06E-11 | -10,392 | | HE I GHT | TEMP
K | LOG(N(N2)
/M3) | LOG(N(O2)
/M3) | LOG(N(O)
/M3) | LOG(N(A)
/M3) | LOG(N(HE)
/M3) | LOG (N (H)
/M3) | LOG(N
/M3) | LOG
(PRESSURE
NT/M2) | | DENSITY
SCALE HT
KM | DENSITY
KG/M3 | LOG (DEN
KG/M3) | |--------------|------------------|-------------------|-------------------|------------------|------------------|-------------------|--------------------|------------------|----------------------------|----------------|---------------------------|----------------------|--------------------| | 420 | 2544.9 | 14.481 | 13,216 | 14.851 | 11,121 | 12.623 | 10.024 | 15.014 | -4.440 | 19.73 | 112.06 | 3.38E-11 | -10.471 | | 440 | 2553.7 | | 13,101 | 14,793 | 10,979 | 12.608 | 10,012 | 14.044 | -4.509 | 19.46 | 115.21 | 2.84E-11 | -10.547 | | 460 | 2560.8 | | | 14.736 | 10.838 | 12.593 | 10.002 | 14.875 | -4.577 | 19.21 | 118,23 | 2.39E-11 | -10.621 | | 480 | 2566.6 | | 12.877 | 14.680 | 10,698 | 12.579 | 9.994 | 14.808 | -4.643 | 18.97 | 121.16 | 2.02E-11 | -10.694 | | 500 | 2571.3 | | 12.766 | 14.624 | 10.560 | 12.564 | 9.987 | 14.742 | -4.708 | 18.75 | 124.02 | 1.72E-11 | -10.765 | | 520 | 2575.1 | | 12.656 | 14.569 | 10,423 | 12.550 | 9.982 | 14.678 | -4.771 | 18.53 | 126.82 | 1.47E-11 | -10.834 | | 540 | 2578.3 | | 12.547 | 14.514 | 10.287 | 12.536 | 9.975 | 14.615 | -4.834 | 18.33 | | 1.25E-11 | -10,902 | | 560 | 2581.0 | | 12.439 | 14.460 | 10.153 | 12.523 | 9.969 | 14.553 | -4.895 | 18.13 | 132.21 | 1.08E-11 | -10,968 | | 580
600 | 2583.3
2585.2 | | 12.332 | 14.406 | 10.019
9.886 | 12.509 | 9.963 | 14.492 | -4.955 | 17.95 | 134.83 | 9.26E-12 | -11.033 | | 800 | 2303.2 | 13,013 | 12,225 | 14.352 | 7.000 | 12.495 | 9.957 | 14.433 | -5.015 | 17.78 | 137.41 | 8.00E-12 | -11.097 | | 620 | 2586.9 | | 12,119 | 14.299 | 9.754 | 12.482 | 9.951 | 14.374 | -5.073 | 17.62 | 139.95 | 6.92E-12 | -11,160 | | 640 | 2588.3 | | 12.014 | 14,247 | 9.623 | 12.469 | 9.946 | 14.316 | -5.131 | 17.46 | 142.43 | 6.01E-12 | -11,221 | | 660 | 2589.5 | | 11,910 | 14.194 | 9.492 | 12.456 | 9.941 | 14.260 | -5.187 | 17.32 | 144.83 | 5.23E-12 | -11.282 | | 680 | 2590.5 | | 11.806 | 14.142 | 9.363 | 12.443 | 9.936 | 14.204 | -5.243 | 17.18 | 147.21 | 4.56E-12 | -11.341 | | 700
720 | 2591.5 | | 11,703 | 14.091 | 9,234 | 12.430 | 9.931 | 14.148 | -5.298 | 17.05 | 149.55 | 3.98E-12 | -11.400 | | 740 | 2593.0 | | 11,600
11,498 | 14.039
13.988 | 9.106
8.979 | 12.417 | 9.927 | 14.094 | -5.352 | 16.92 | 151.83 | 3.49E-12 | -11.457 | | 760 | 2593.6 | | 11.397 | 13.938 | 8.853 | 12.404
12.391 | 9.922
9.918 | 14.040
13.987 | -5.406
-5.459 | 16.80
16.69 | 154.06
156.23 | 3.06E-12
2.69E-12 | -11.514
-11.570 | | 780 | 2594.2 | | 11.297 | 13.887 | 8.727 | 12.379 | 9.914 | 13.935 | -5.511 | 16.58 | 158.36 | 2.37E-12 | -11.625 | | 800 | 2594.6 | | 11,197 | 13.837 | 8.602 | 12.366 | 9.910 | 13.883 | -5.563 | 16.48 | 160.49 | 2.09E-12 | -11.680 | | 020 | | 10 (05 | | | | | | | | | | | | | 820
840 | 2595.1
2595.5 | | 11.097 | 13.787 | 8.478
8.355 | 12.354 | 9,907 | 13.832 | -5.614 | 16.37 | 162.52 | 1.85E-12 | -11.734 | | 860 | 2595.8 | | 10.998
10.900 | 13.738
13.689 | 8.232 | 12.341
12.329 | 9.903 | 13.781
13.732 | -5.664 | 16.28 | 164.50 | 1.63E-12
1.45E-12 | -11.787 | | 880 | 2596.1 | | 10.802 | 13,640 | 8.110 | 12.317 | 9.900
9.896 | 13.682 | -5.714
-5.763 | 16.18
16.08 | 166.46
168.38 | 1.28E-12 | -11.839
-11.891 | | 900 | 2596.4 | | 10.705 | 13,591 | 7.989 | 12.304 | 9.893 | 13,634 | -5.812 | 15.99 | 170.27 | 1.14E-12 | -11.942 | | 920 | 2596.7 | 12,197 | 10,608 | 13.543 | 7.868 | 12.292 | 9.889 | 13,585 | -5.860 | 15.89 | 172.13 | 1.02E-12 | -11.993 | | 940 | 2596.9 | | 10,512 | 13,495 | 7.748 | 12,280 | 9.886 | 13,538 | -5.908 | 15.80 | 173.97 | 9.05E-13 | -12.043 | | 960 | 2597.1 | 12,029 | 10,417 | 13,447 | 7.629 | 12.268 | 9,883 | 13,491 | -5.955 | 15.71 | 175.78 | 8.07E-13 | -12,093 | | 980 | 2597.3 | | 10,321 | 13,399 | 7.510 | 12.256 | 9.879 | 13.444 | -6.001 | 15.61 | 177.57 | 7.21E-13 | -12.142 | | 1000 | 2597.5 | 11.863 | 10,227 | 13,352 | 7.392 | 12.245 | 9.876 | 13.398 | -6.047 | 15.51 | 179.35 | 6.44E-13 | -12.191 | | 1050 | 2597.9 | 11.658 | 9.993 | 13,235 | 7.100 | 12.215 | 9.868 | 13.286 | -6.160 | 15.27 | 183.70 | 4.89E-13 | -12,311 | | 1100 | 2598.2 | 11.456 | 9.762 | 13,120 | 6.812 | 12.186 | 9.860 | 13.176 | -6.269 | 15.00 | 188.05 | 3.74E-13 | -12,427 | | 1150 | 2598.4 | 11.257 | 9.534 | 13,006 | 6.527 | 12.158 | 9.853 | 13.071 | -6.375 | 14.71 | 192.42 | 2.87E-13 | -12.542 | | 1200 | 2598.6 | | 9.310 | 12.893 | 6.247 | 12.130 | 9.845 | 12,968 | -6.477 | 14.40 | 196.85 | 2.22E-13 | -12.653 | | 1250 | 2598.8 | | 9.088 | 12.783 | | 12.102 | 9.838 | 12.870 | -6.575 | 14.06 | 201.44 | 1.73E-13 | -12,762 | | 1300 | 2599.0 | | 8.869 | 12,673 | | 12.075 | 9,831 | 12,775 | -6.670 | 13.69 | 206.24 | 1.35E-13 | -12.869 | | 1350 | 2599.1 | | 8.653 | 12.565 | | 12.048 | 9.824 | 12.684 | -6.761 | 13,28 | 211.30 | 1.06E-13 | -12,973 | | 1400 | 2599.2 | | 8.440 | 12.459 | | 12.021 | 9.817 | 12.597 | -6.848 | 12.85 | 216.67 | 8.43E-14 | -13.074 | | 1450
1500 | 2599.3
2599.3 | | 8.230
8.022 | 12.353
12.249 | | 11.995
11.969 | 9.811 | 12.514 | -6.931 | 12.39 | 222.52 | 6.71E-14 | -13.173 | | 1300 | 207743 | 7.733 | 8.022 | 12.6247 | | 11.909 | 9.804 | 12.435 | -7.010 | 11.90 | 228.87 | 5.38E-14 | -13.269 | | 1600 | 2599.5 | | 7.614 | 12.046 | | 11.918 | 9.791 | 12.290 | -7.155 | 10.88 | 243.43 | 3.52E-14 | -13.454 | | 1700 | 2599.6 | | 7.217 | 11.847 | | 11.868 | 9.778 | 12.161 | -7.284 | 9.84 | 261.31 | 2.37E-14 | -13.626 | | 1800 | 2599.6 | | 6.829 | 11,653 | | 11.819 | 9.766 | 12.048 | -7.397 | 8.84 | 283.33 | 1.64E-14 | -13.786 | | 1900 | 2599.7 | | 6.451 | 11.464 | | 11.772 | 9.754 | 11.949 | -7.496 | 7.92 | 310.66 | 1.17E-14 | -13.932 | | 2000
2100 | 2599.7 | | 6,081 | 11.279 | | 11.726 | 9.742 | 11.862 | -7.583 | 7.12 | 344.23 | 8.61E-15 | -14.065 | | 2200 | 2599.8
2599.8 | | | 11.099
10.923 | | 11.681 | 9.731 | 11.786 | -7.659 | 6.45 | 384.77 | 6.54E-15 | -14.185 | | 2300 | 2599.8 | | | 10,751 | | 11.637
11.594 | 9•720
9•709 | 11.718
11.657 | -7.727
-7.788 | 5.90
5.46 | 432.94
488.55 | 5.11E-15
4.11E-15 | -14.291 | | 2400 | 2599.9 | | | 10.583 | | 11.552 | 9.109 | 11.601 | -7.844 | 5.12 | 550.69 | 3.39E-15 | -14.386
-14.469 | | 2500 | 2599.9 | | | 10,419 | | 11.511 | 9.688
| 11.550 | -7.895 | | 618.30 | 2.86E-15 | -14.544 | | - | | - - - | | - | | | | | | | | | | | EXOSPHER 1 | C | TEMPERATURE | (K) | |-------------------|---|--------------------|-----| | | | | | | HEIGHT | 500 | 550 | 600 | 650 | 700 | 800 | 900 | 1000 | 1100 | 1200 | |--------|----------------|--------------------|--------------------|---------|-----------------|----------------|---------------|---------------|--------------------|---------| | KM | | | | | | | | , | | | | 90 | -5.465 | -5.465 | -5.465 | -5.465 | -5.465 | -5-465 | -5.465 | -5.465 | -5.465 | -5.465 | | 92 | -5.620 | -5.620 | -5.620 | -5,620 | -5.620 | -5.620 | -5.620 | -5.620 | -5.620 | -5.620 | | 94 | -5.776 | -5.776 | -5.776 | -5.776 | -5.776 | 5.776 | +5.776 | -5.776 | -5.776 | -5.776 | | 96 | -5.932 | -5.932 | -5.932 | -5.932 | -5.932 | -5.933 | -5.933 | -5.933 | -5.933 | -5.933 | | 98 | -6.088 | -6.088 | -6.089 | -6.089 | -6.089 | -6.089 | -6.090 | -6.090 | -6.090 | -6.090 | | 100 | -6.243 | -6.244 | -6.244 | -6.245 | -6.245 | -6.246 | -6.246 | -6.247 | -6.247 | -6.247 | | 102 | -6.397 | -6.397 | -6.398 | -6.398 | -6.399 | -6.400 | -6.400 | -6.401 | -6.402 | -6.402 | | 104 | -6.549 | -6.550 | -6.551 | -6.552 | -6.552 | -6.554 | -6.555 | -6.556 | -6.556 | -6.557 | | 106 | -6.702 | -6.703 | -6.704 | -6.705 | -6.706 | -6.707 | -6.708 | -6.710 | -6.711 | -6.712 | | 108 | -6.853 | -6.854 | -6.856 | -6.857 | -6.858 | -6.860 | -6.861 | -6.862 | -6.864 | -6.865 | | 110 | -7.002 | -7.004 | -7.005 | -7.006 | ~7. 007 | -7.009 | -7.011 | -7.012 | -7.014 | -7.015 | | 115 | -7 •355 | - 7.355 | -7.356 | -7.356 | -7.356 | -7.357 | -7∙357 | -7.358 | ~7.358 | -7.359 | | 120 | -7.664 | -7.661 | -7.658 | -7.656 | -7.654 | -7.651 | -7.648 | -7.646 | - 7.645 | -7.643 | | 125 | -7.935 | -7,927 | - 7.920 | -7.915 | ~7 .910 | -7.902 | -7.895 | -7.890 | -7.885 | -7.882 | | 130 | -8.175 | -8.161 | -8.150 | -8.140 | -8.132 | 8.118 | -8.107 | -8.098 | -8,091 | -8.085 | | 135 | -8.386 | -8.366 | -8. 350 | -8,337 | -8.325 | -8.306 | -8.291 | -8.279 | -8.269 | -8.260 | | 140 | -8.573 | -8.547 | -8.527 | -8.509 | -8.495 | -8.471 | -8.452 | -8.436 | -8.424 | -8.413 | | 145 | -8.742 | -8.710 | -8.685 | -8.664 | -8.645 | -8.616 | -8.594 | -8.576 | -8.561 | -8.548 | | 150 | -8.898 | -8,860 | -8.829 | -8.804 | -8.782 | -8.748 | -8.722 | -8.701 | -8.684 | -8.669 | | 155 | -9.044 | -8,999 | -8.963 | -8,933 | -8.908 | -8.868 | -8.838 | -8.814 | -8.795 | -8.778 | | 160 | -9.182 | -9.130 | -9.089 | -9.054 | -9.026 | -8.98n | -8.945 | -8.918 | -8.897 | -8.878 | | 170 | -9.440 | -9.375 | -9.322 | -9.278 | -9.241 | -9.183 | -9.140 | -9.106 | -9.079 | -9.056 | | 180 | -9.679 | -9.601 | -9.537 | -9.484 | -9.439 | ~9 •368 | -9.314 | -9.273 | -9.240 | -9.213 | | 190 | -9.902 | -9.811 | -9.737 | -9.675 | -9.622 | -9.53R | -9.474 | -9.425 | -9.386 | -9.354 | | 200 | -10.112 | -10.010 | -9.926 | -9.855 | -9.794 | -9.697 | -9.624 | ~9.566 | -9.520 | -9.483 | | 210 | -10.311 | -10.198 | -10.104 | -10.025 | -9.957 | -9.848 | -9.764 | -9.699 | -9.646 | -9.604 | | 220 | -10.501 | -10.377 | -10.274 | -10.187 | -10.112 | -9.991 | -9.898 | -9.824 | -9.765 | -9.717 | | 230 | -10.683 | -10.549 | -10.437 | -10.342 | -10.260 | -10.128 | -10.025 | -9.944 | -9.878 | -9.824 | | 240 | -10.858 | -10.714 | -10.593 | -10.491 | -10.402 | -10.259 | -10.147 | -10.058 | -9.986 | -9.927 | | 250 | -11.029 | -10.873 | -10.744 | -10.634 | -10.539 | -10.385 | -10.264 | -10.168 | -10.090 | -10.025 | | 260 | -11.194 | -11.028 | -10.890 | -10.773 | -10.672 | -10.507 | -10.378 | -10.274 | -10.190 | -10.120 | | 270 | -11.356 | -11.179 | -11.032 | -10.907 | -10.800 | -10.624 | -10.487 | -10.377 | -10.286 | -10.211 | | 280 | -11.515 | -11.327 | -11.171 | -11.039 | -10.92 <u>5</u> | -10.739 | -10.593 | ~10,476 | -10.380 | -10.300 | | 290 | -11.671 | -11.472 | -11.307 | -11.167 | -11.047 | -10.85n | -10.697 | -10.573 | -10.471 | -10.386 | | 300 | -11.825 | -11.615 | -11.440 | -11.292 | -11.166 | -10.959 | -10.797 | -10.667 | -10.559 | -10.469 | | 310 | -11.976 | -11.755 | -11.571 | -11.416 | -11.282 | -11.065 | -10.895 | -10.758 | -10.645 | -10.551 | | 320 | -12.125 | -11.893 | -11.700 | -11.537 | -11.397 | -11.169 | -10.991 | -10.848 | -10.729 | -10.630 | | 330 | -12.273 | -12.030 | -11.828 | -11.657 | -11.510 | -11.271 | -11.085 | -10.935 | -10.812 | -10.708 | | 340 | -12.417 | -12.165 | -11.953 | -11.774 | -11.621 | -11.372 | -11.178 | -11.021 | -10.892 | -10.784 | | 350 | -12.559 | -12.297 | -12.077 | -11.891 | -11.731 | -11.471 | -11.268 | -11.105 | -10.971 | -10.858 | | 360 | -12.699 | -12.428 | ~12,200 | -12.006 | -11.839 | -11.568 | -11.358 | -11.188 | -11.049 | -10.932 | | 370 | -12.835 | -12.557 | -12.321 | -12.119 | -11.946 | -11.665 | -11.446 | -11.270 | -11.125 | -11.003 | | 380 | -12.967 | -12.684 | -12.441 | -12.232 | -12.052 | -11.760 | -11.532 | -11.350 | -11.200 | -11.074 | | 390 | -13.095 | -12.808 | -12.558 | -12.343 | -12.157 | -11-854 | -11.618 | -11.429 | -11.274 | -11.143 | | 400 | -13.218 | -12.930 | -12.674 | -12.453 | -12.261 | -11.947 | ~11.703 | -11.507 | -11.347 | -11.212 | | | | | | - | | EIGHTOILE TIL | • | • | | | |--------|---------|---------|---------|---------|---------|---------------|---------|----------|---------|---------| | | 500 | 550 | 600 | 650 | 700 | 800 | 900 | 1000 | 1100 | 1200 | | HEIGHT | | | | | | | | | | | | KM | 420 | -13.446 | -13,163 | -12.900 | -12,668 | -12.464 | -12.130 | -11.870 | -11.661 | -11.489 | -11.346 | | 440 | -13.646 | -13.379 | -13.116 | -12.876 | -12.663 | -12,310 | -12.033 | -11.811 | -11.629 | -11.477 | | 460 | -13.815 | -13.575 | -13.320 | -13.077 | -12.857 | -12.486 | -12.194 | -11.959 | -11.766 | -11.605 | | 480 | -13.953 | -13.747 | -13.508 | -13.268 | -13.044 | -12.659 | -12.351 | -12.103 | -11.900 | -11.730 | | 500 | -14.066 | -13.895 | -13.678 | -13,447 | -13,223 | -12.827 | -12.506 | -12.246 | -12,032 | -11.853 | | 520 | -14.158 | -14.020 | -13.829 | -13,612 | -13,392 | -12.991 | -12.658 | -12.386 | -12.161 | -11.974 | | 540 | -14.236 | -14.124 | -13,960 | -13.762 | -13.551 | -13.149 | -12.807 | -12.523 | -12.289 | -12.093 | | 560 | -14.302 | -14,212 | -14.072 | -13.895 | -13.698 | -13,301 | -12.952 | -12.659 | -12.415 | -12,210 | | 580 | -14.361 | -14.287 | -14.168 | -14.013 | -13.831 | -13.446 | -13.093 | -12.791 | -12.538 | -12.325 | | 600 | -14.415 | -14.353 | -14.251 | -14.115 | -13.950 | -13.583 | -13.229 | -12.921 | -12.660 | -12.439 | | | • • | | | | | | | | | | | 620 | -14.465 | -14,412 | -14.323 | -14,203 | -14.056 | -13.711 | -13.361 | -13.048 | -12.780 | -12.551 | | 640 | -14.512 | -14.466 | -14.387 | -14.281 | -14.149 | -13.828 | -13.487 | -13.172 | -12.897 | -12.662 | | 660 | -14.557 | -14.517 | -14.445 | -14.349 | -14.231 | -13.936 | -13.606 | -13.291 | -13.012 | -12.770 | | 680 | -14.599 | -14.564 | -14.498 | -14.411 | -14.304 | -14.034 | -13.719 | -13.407 | -13.124 | -12.877 | | 700 | -14.639 | -14.610 | -14.549 | -14.467 | -14.369 | -14-122 | -13.824 | -13.518 | -13.234 | -12.982 | | 720 | -14.678 | -14.653 | -14.596 | -14.519 | -14.428 | -14-201 | -13.922 | -13.624 | -13.340 | -13.085 | | 740 | -14.715 | -14.695 | -14.641 | -14.568 | -14.482 | -14.272 | -14.012 | -13.724 | -13.443 | -13,185 | | 760 | -14.750 | -14.735 | -14.685 | -14.615 | -14.532 | -14.337 | -14.094 | -13.819 | -13.542 | -13.283 | | 780 | -14.783 | -14.773 | -14.727 | -14.659 | -14.580 | -14.395 | -14.170 | -13.908 | -13.637 | -13.378 | | 600 | -14.816 | -14.811 | -14.767 | -14.702 | -14.625 | -14.449 | -14.238 | -13.991 | | | | | -148010 | -24,001 | | | 414.023 | -140444 | -140530 | -136341 | -13.727 | -13,470 | | 820 | -14.847 | -14.846 | -14.807 | -14.743 | -14.668 | -14.499 | -14.301 | -14.068 | -13.813 | -13.560 | | 840 | -14.876 | -14.881 | -14.845 | -14.783 | -14.710 | -14.545 | -14.358 | -14,139 | -13.895 | -13.645 | | 860 | -14.905 | -14.914 | -14.881 | -14,823 | -14.750 | -14.589 | -14.411 | -14.205 | -13,971 | -13.728 | | 880 | -14.932 | -14.946 | -14.917 | -14.861 | -14.789 | -14.631 | -14.460 | -14.265 | -14.043 | -13.806 | | 900 | -14.958 | -14.976 | -14,952 | -14.898 | -14.828 | -14.671 | -14.506 | -14.321 | -14,110 | -13.881 | | 920 | -14.984 | -15.006 | -14.985 | -14.934 | -14.865 | -14.710 | -14.549 | -14.373 | -14.172 | -13.952 | | 940 | -15.008 | -15.034 | -15.017 | -14.969 | -14,901 | -14.748 | -14.589 | -14,421 | -14,231 | -14.019 | | 960 | -15.031 | -15.062 | -15.049 | -15,003 | -14.937 | -14.784 | -14.628 | -14.466 | -14,285 | -14.082 | | 980 | -15.054 | -15.088 | -15.079 | -15.036 | -14.972 | -14.820 | -14.665 | -14.508 | -14.335 | -14.142 | | 1000 | -15.076 | -15,113 | -15,108 | -15.068 | -15.006 | -14.855 | -14.701 | -14.547 | -14.382 | -14.197 | | | | | | | -13,000 | -146033 | -140101 | W. 1854. | -14,502 | -146171 | | 1050 | -15.128 | -15.173 | -15.177 | -15.145 | -15.088 | -14.940 | -14.786 | -14.638 | -14.487 | -14.322 | | 1100 | -15.177 | -15.228 | -15.241 | -15.217 | -15.165 | -15.021 | -14.867 | -14.721 | -14.578 | -14.428 | | 1150 | -15.222 | -15.278 | -15.299 | -15,283 | -15.238 | -15.099 | -14.944 | -14.797 | -14.659 | -14.520 | | 1200 | -15.266 | -15.325 | -15.352 | -15,345 | -15.306 | -15.173 | -15.018 | -14.870 | -14.733 | -14.601 | | 1250 | -15.307 | -15.369 | -15.402 | -15.402 | -15.370 | -15.245 | -15.090 | -14.940 | -14.803 | -14.674 | | 1300 | -15.347 | -15.410 | -15.448 | -15,455 | -15.430 | -15.313 | -15.160 | -15.008 | -14.869 | -14.741 | | 1350 | -15.385 | -15.450 | -15.491 | -15,504 | -15.486 | -15.379 | -15.227 | -15.073 | -14.932 | -14.805 | | 1400 | -15.422 | -15.487 | -15.531 | -15.549 | -15.538 | -15.441 | -15.292 | -15.137 | -14.994 | -14.865 | | 1450 | -15.459 | -15.523 | -15.569 | -15.592 | -15.587 | -15.500 | -15.355 | -15.199 | -15.054 | -14.923 | | 1500 | -15.494 | -15.558 | -15.605
| -15.632 | -15.632 | | | -15.260 | | | | 1,000 | -120424 | -124220 | -17,007 | -134032 | -13.032 | -15.556 | -15.416 | +13.200 | -15.112 | -14.979 | | 1600 | -15.563 | -15.624 | -15.673 | -15.705 | -15.715 | -15.660 | -15.531 | -15.376 | -15.225 | -15.087 | | 1700 | -15.630 | -15.686 | -15.735 | -15.771 | -15.787 | -15.752 | -15.638 | -15.487 | -15.332 | -15.190 | | 1800 | -15.694 | -15.746 | -15.793 | -15.830 | -15.852 | -15.835 | -15.736 | -15.590 | -15.435 | -15.289 | | 1900 | -15.756 | -15.804 | -15.849 | -15,886 | -15.911 | -15.908 | -15.825 | -15.688 | -15.534 | -15.384 | | 2000 | -15.817 | -15.860 | -15.902 | -15,938 | -15.966 | -15.974 | -15.907 | -15.780 | -15.627 | -15.476 | | 2100 | -15.876 | -15.915 | -15.953 | -15.988 | -16.016 | -16.034 | -15.981 | -15.865 | -15.716 | -15.564 | | 2200 | -15.934 | -15.967 | -16.002 | -16.035 | -16.063 | -16.088 | -16.049 | -15.944 | -15.801 | -15.648 | | 2300 | -15.991 | -16.019 | -16.050 | -16.081 | -16.108 | -16.138 | -16.110 | -16.017 | -15.881 | -15.729 | | 2400 | -16.046 | -16.069 | -16.097 | -16.125 | -16.151 | -16.183 | -16.166 | -16.085 | -15.956 | -15.807 | | 2500 | -16.100 | -16.118 | -16.142 | -16,167 | -16.192 | -16.226 | -16.217 | -16.148 | -16.027 | -15.881 | | 200 | -104100 | | | -1-4-01 | -10.172 | -10+EC | -104511 | -10.140 | -1000T | 4139001 | Š ## EXOSPHERIC TEMPERATURE (K) | | | | | | | | - | | | | |--------|---------|---------|---------------|---------|---------|----------------|----------------|----------------|---------|----------------| | | 1200 | 1300 | 1400 | 1500 | 1600 | 1800 | 2000 | 2200 | 2400 | 2600 | | HEIGHT | | | | | | | | | | | | . KM | | | | | | | | | | *. | | 90 | -5.465 | -5.465 | -5.465 | -5,465 | -5.465 | ~5.465 | -5.465 | -5,465 | -5.465 | -5.465 | | 92 | -5.620 | ~5.620 | -5.620 | -5,620 | -5,620 | -5.620 | -5.620 | -5.620 | -5.620 | -5.620 | | 94 | -5.776 | -5.776 | -5.776 | -5,776 | -5.776 | m5.776 | -5.776 | -5.776 | -5.776 | -5.777 | | 96 | ~5.933 | -5.933 | -5.933 | -5.933 | -5.933 | -5.934 | -5.934 | -5.934 | -5.934 | -5.934 | | 98 | -6.090 | -6.091 | -6.091 | -6.091 | -6.091 | -6.091 | -6.092 | -6.092 | -6.092 | -6.092 | | 100 | -6.247 | -6.248 | -6.248 | -6.248 | -6.248 | -6.249 | -6.249 | -6.250 | -6.250 | -6.250 | | 102 | -6.402 | -6.403 | -6.403 | -6.403 | -6.404 | -6.404 | -6.405 | -6.406 | -6.406 | -6.406 | | 104 | -6.557 | -6.558 | -6.558 | -6,559 | -6.559 | -6.560 | -6.561 | -6.562 | -6.562 | -6.563 | | 106 | -6.712 | -6.712 | -6.713 | -6.714 | -6.714 | -6.716 | -6.717 | -6.717 | -6.718 | -6.719 | | 108 | -6.865 | -6.866 | -6.867 | -6.867 | -6.868 | -6.869 | -6.871 | -6.872 | -6.873 | -6.873 | | 110 | -7.015 | -7.016 | -7.017 | -7.017 | -7.018 | -7.020 | ~7 •021 | -7.022 | -7.023 | -7.024 | | 115 | -7.359 | -7.359 | -7.360 | -7.360 | -7.360 | -7.361 | -7.362 | -7.362 | -7.363 | -7.363 | | 120 | -7.643 | -7.642 | -7.641 | -7.640 | -7.640 | -7.63R | -7.637 | -7.636 | -7.635 | -7.635 | | 125 | -7.882 | -7.878 | -7.875 | -7.873 | -7.871 | -7.867 | -7.863 | -7.861 | -7.858 | -7.856 | | 130 | -8.085 | -8.079 | -8.074 | -8.070 | -8.066 | -8.060 | -8.054 | -8.049 | -8.045 | -8.042 | | 135 | -8.260 | -8.252 | -8.246 | -8,240 | -8.235 | -8.225 | -8.218 | -8.211 | -8.206 | -8.201 | | 140 | -8.413 | -8.404 | -8.395 | -8.388 | -8.381 | -8.370 | -8.361 | -8.353 | -8.346 | -8.340 | | 145 | -8.548 | -8.537 | -8.528 | -8.519 | -8.511 | -8.498 | -8.487 | -8.478 | -8.470 | -8.462 | | 150 | -8.669 | -8,657 | -8.646 | -8.636 | -8.628 | -8.613 | -8.601 | -8.590 | -8.581 | -8.573 | | 155 | -8.778 | -8.765 | -8.753 | -8.742 | -8.732 | -8.716 | -8.703 | -8.691 | -8.681 | -8.672 | | | | · | | - | | 2.50 | -54102 | -0.07. | | -01012 | | 160 | -8.878 | -8.863 | -8.850 | -8.838 | -8.828 | -8.810 | -8.796 | -8.783 | -8.773 | -8.763 | | 170 | -9.056 | -9.038 | -9.022 | -9,008 | -8.996 | -8.97 6 | ~8.959 | -8.946 | -8.934 | -8.923 | | 180 | -9.213 | -9.190 | -9.172 | -9.156 | -9.142 | -9.118 | ~9.100 | -9. 084 | -9.071 | -9.060 | | 190 | -9.354 | -9.327 | -9.305 | -9.286 | -9.270 | -9.243 | -9.222 | -9.205 | -9.191 | -9.179 | | 200 | -9.483 | -9.452 | -9.426 | -9.405 | -9.386 | ~9.355 | -9.331 | -9.312 | -9.297 | - 9•284 | | 210 | -9.604 | -9.568 | -9.538 | -9.513 | -9.492 | -9.457 | -9.430 | -9.408 | -9.391 | -9.377 | | 220 | -9.717 | -9.677 | -9.643 | -9.615 | -9.590 | -9.550 | -9. 520 | -9.496 | -9.476 | -9.461 | | 230 | -9.824 | -9.779 | -9.742 | -9.710 | -9.682 | -9. 638 | -9.603 | -9.576 | -9.555 | -9.537 | | 240 | -9.927 | -9.877 | -9.835 | -9.800 | -9.769 | +9.719 | -9.681 | ~9.65 l | -9.627 | -9.607 | | 250 | -10.025 | -9.971 | -9.925 | -9.886 | -9.852 | -9. 797 | -9.755 | -9.721 | -9.694 | -9.673 | | 260 | -10.120 | -10.061 | -10.011 | -9.968 | -9.931 | -9.871 | -9.824 | -9.788 | -9.758 | -9.734 | | 270 | -10.211 | -10.148 | -10.094 | -10.048 | -10.008 | -9-942 | -9.891 | -9.851 | -9.818 | -9.792 | | 280 | -10.300 | -10.232 | -10.174 | -10,125 | -10.081 | -10.011 | -9.955 | -9.911 | -9.876 | -9.847 | | 290 | -10.386 | -10.314 | -10.252 | -10.199 | -10.153 | -10.077 | -10.017 | -9.970 | -9.931 | -9.900 | | 300 | -10.469 | -10.393 | -10.328 | -10.271 | -10.222 | -10.141 | -10.077 | -10.026 | -9.985 | -9.951 | | 310 | -10.551 | -10.470 | -10.401 | -10.342 | -10.290 | -10.204 | -10.136 | -10.081 | -10.037 | -10.000 | | 320 | -10.630 | -10.546 | -10.473 | -10.411 | -10.356 | -10.264 | -10.192 | -10.134 | -10.087 | -10.048 | | 330 | -10.708 | -10.620 | -10.544 | -10.478 | -10.420 | -10.324 | -10.248 | -10.186 | -10.136 | -10.094 | | 340 | -10.784 | -10.692 | -10.612 | -10.543 | -10.483 | -10.382 | -10.302 | -10.237 | -10.184 | -10.139 | | 350 | -10.858 | -10.762 | -10.680 | -10,608 | -10.544 | -10.439 | -10.355 | -10.286 | -10.230 | -10.183 | | 360 | -10.932 | -10.832 | -10.746 | -10.671 | -10.605 | -10.495 | -10.407 | -10.335 | -10.276 | -10.227 | | 370 | -11.003 | -10.900 | -10.810 | -10,733 | -10.664 | -10.549 | -10.458 | -10.383 | -10.321 | -10.269 | | 380 | -11.074 | -10.967 | -10.874 | -10.793 | -10.722 | -10.603 | -10.508 | -10,430 | -10.365 | -10,311 | | 390 | -11.143 | -11.032 | -10.937 | -10.853 | -10.779 | -10.656 | -10.557 | -10.476 | -10.408 | -10.352 | | 400 | -11.212 | -11.097 | -10.998 | -10.912 | -10.836 | -10.708 | -10.605 | -10.521 | -10.451 | -10.392 | | | | | | | | | | | | | H | • | 2600 | | -10-471 | 50 | | ď | ŏ | ā | ŏ | | i | 11.1 | -11.221 | 11.2 | | 11.4 | * · · · | : | | 9 | 0 | = | Ξ | = | Ξ: | Ξ; | | | :: | -12.191 | : | 21 | 75.21 | 10.01 | 2 4 7 | 12.86 | 12.97 | 13,07 | 13,17 | 13.26 | 3.45 | 13.62 | 13.78 | 13.93 | 14.06 | 14.18 | 14.29 | -14,386 | 14.46 | 14.54 | | |-----------------|--------|--------|---------|----------|--------|---------|---------|---------|---------|---------|---------|-------|---------|-------|-------|-------|---------|-------|--------|---------|-------|-------|-------|-------|-------|--------|-------|-------|-------|----------|--------|---------|-------|-------|-------|-------|-------|-------|-------|---------|--------|-------|-------|---------|-------|--|-------|---------|-------|---------|-------------| | | 2400 | | -10.534 | 10.01 | 10.77 | 0.84 | 10.91 | 10,99 | 11.06 | 11,12 | 11,19 | 1,26 | Ξ | 11.39 | 11.45 | 11.51 | 11.57 | 11.65 | 40. | C) • 11 | 19•11 | ٠. | 6.1 | 6.1 | 0,0 | ٠
• | • • | , , | | 12,357 | : | -12.485 | 9.7 | • | 9 0 | | 3.1 | 3.2 | 3.3 | 3.4 | 3.6 | 3.8 | 4 | , | 4.2 | 4 | 4 | -14.554 | 4.6 | 4.6 | | | | 2200 | | 2 | 2 9 | 30 | | Ξ | Ξ | Ξ | Ξ. | Ξ. | 1.38 | -11.452 | 1,52 | 1.58 | 1.65 | 7 | 1.78 | 1 . B4 | 3.5 | 1.97 | 2.03 | 5,09 | 2.15 | 2,21 | 2,26 | 7.02 | 200 | 0 7 | .12.553 | | -12,689 | 2,82 | | • | | 3 | 3.54 | 3.64 | 3.74 | 13.93 | 14.09 | 14.23 | 14.36 | 14.46 | 14.55 | 14-63 | -14.709 | 14.77 | 14.83 | | | | 2000 | | -10.700 | -10.792 | 100.01 | -11.053 | -11.136 | -11.217 | -11.296 | -11.375 | -11.451 | 11.52 | -11.601 | 11.67 | 11.74 | 11,81 | 11.88 | 11,95 | 12.02 | 12,09 | 12,15 | 12.2 | 12.2 | 12.3 | 12.4 | 12.4 | 12.5 | 9.0 | | -12,785 | | 12. | 13.07 | 13.21 | | 1304 | 13.70 | 13.81 | 13,92 | 14.01 | 4 - 1 | | 4 | 4 | 4.6 | 7 | , | -14.860 | 6.4 | 6 4 | | | TEMPERATURE (K) | 1600 | | 0. | 0.0 |) (| 11.180 | 11.2 | 11.3 | 11.4 | 11.5 | 11.6 | 07.11 | -11.780 | 11.85 | 11,93 | 12,01 | 12.09 | 12.16 | 12,23 | 12,31 | 12,38 | 12.45 | 12.52 | 12.59 | 12.66 | 12.73 | 12.80 | 12,86 | 64.0 | 13.066 | 13.00 | .00 | e. | m . | 'n, | 5 0 | 1 | 3 | 3 | 4 | 4.47 | 7 2 7 | 44 | 7 7 | 8 4 | 8 4 | 9 0 | 15,021 | 5.08 | 5.1 | | | EXOSPHERIC TEM | 1600 | | ď | <u>.</u> | | 11.257 | : - | - | _ | _: | _ | 0 | -12,002 | 2.0 | 2.1 | 2.2 | 2,3 | 2.4 | 2.5 | 2,5 | 2.6 | 7. | 2 8 | 2.8 | 2.9 | 3.0 | | | | *13°33'C | υ
• | 3.56 | 3.71 | 3.85 | 6 | • | 9 6 | 38 | 46 | 52 | 14.46 | | 1.0.7 | 14.00 | 00.41 | | 70.01 | , 10 | 15.27 | 15.34 | • | | EX | 1500 | | 11,02 | 11,13 | 11.664 | 11.457 | 11.55 | 11.65 | 11.75 | 11,85 | 11,94 | 12.04 | -12,135 | 12,22 | 12,31 | 12,40 | 12,49 | 12,58 | 12,66 | 12,75 | 12,83 | 2.91 | 2.99 | 3.07 | 3,15 | 3,23 | 3,30 | 9 | | 130,501 | | 13,75 | 13,89 | 14,03 | 12 | 7. AF | 14.4 | 14.51 | 14.57 | 14. | 74.74 | 76 7 | 0 | , c | 200 | ֡֝֜֝֜֜֜֝֜֝֓֜֜֝֓֓֓֜֜֜֓֓֓֓֓֜֜֜֓֓֓֓֓֓֓֓֜֓֜֓֓֡֓֡֓֡֓֡ | 7 | 1 U1 | 5,39 | -15,459 | | | | 1400 | | 1.1 | 1.2 | | 12401 | • | | . 8 | 1.9 | 2.0 | 10 18 | -12.286 | 12,38 | 12,47 | 12,57 | 12.66 | 12,75 | 12.84 | 12,93 | 13,02 | 12 | 13.1 | 3.2 | 13,3 | 13.4 | 13,5 | 13.55 | 9 | 13.724 | 13. | 3.9 | • | 4.2 | ď. | • | * 4 | • | 9 | -14.748 | 74. 85 | | 14.0 | | 15.20 | 10.00 | 15.27 | 15.4 | 15.51 | -15.589 | | | | 1300 | | 11,2 | 11.3 | 11.4 | | | | 12.0 | 12.1 | 2.2 | 12 25 | -12.460 | 12.56 | 12.66 | 12,76 | 12,86 | 12,95 | 13,05 | 13,14 | 13.2 | | 3 | 13.4 | 13.5 | 13.6 | 13.7 | 13.7 | 8 | 13934 | 13.9 | 14.14 | 14,26 | 14,37 | 14.46 | 14.54 | 10.41 | 76 71 | 14.80 | -14.859 | 70 71 | 26.01 | 00.01 | CT • CT | 10001 | 0000 | 77.67 | 15.58 | 15.65
| -15,731 | | | | 1200 | | 11,34 | 11.47 | 11.60 | 11,73 | 11.607 | 12.09 | 12.21 | 12.32 | -12,439 | | 12.642 | 12.77 | 12.87 | 12.98 | 13.08 | 13,18 | 13,28 | 13,37 | 13,47 | , | 34.61 | 13.72 | 13.80 | 13.88 | 13,95 | 14.01 | 14.08 | -14.142 | 14,19 | 14.32 | 14.42 | 14.52 | 14.60 | 14.67 | 14.74 | 70 71 | 14.00 | -14.979 | 1 | 2000 | 15.19 | 15.48 | 10.08 | 12047 | 15.56 | 15.04 | 15.80 | 15.881 | | | | HEIGHT | χ
Σ | 420 | 440 | 094 | 084 | 200 | 0.44 | 2 4 | 9 60 | 900 | , | 044 | 9 6 | 680 | 100 | 720 | 740 | 160 | 780 | 800 | 0 | 070 | 860 | 880 | 006 | 920 | 076 | 096 | 086 | 1000 | 05 | 10 | 15 | 20 | 25 | 2 | 9 < | 1 4 | 1500 | | 0001 | 0021 | 0081 | 0061 | 2000 | 2100 | 2000 | 2400 | 2500 |)
)
) | The wide a same definition of the same